Learn From History - Explosion at Texas Facility

Industrial accidents range in severity and impact from minuscule to catastrophic. As operators, owners, or technicians involved with industrial operations, we all have a degree of moral, ethical, and legal responsibility to conduct our work in a manner that does not unduly endanger personnel, property, or the environment. Maintaining a diligent safety stance can be helped by reviewing industrial accidents at other facilities. There is much to learn from these unfortunate events, even when they happen in an industry that may seem somewhat removed from your own.

The U.S. Chemical Safety Board, or CSB, is an independent federal agency that investigates industrial chemical accidents. Below, find one of their video reenactments of an explosion that occurred in Texas in 2013, along with their findings regarding the cause of the incident. Check out the video and sharpen your senses to evaluate potential trouble spots in your own operation.

Contact Analynk for any safety related information you may need concerning their products.

Application Example - 900 MHz Wireless Delivery of Industrial Process Control Signal

We have a new video with an application example where wireless signal transmission provides a powerful solution. You can always get help with your applications by contacting us.

Protect Process Instrumentation From These Five Sources of Damage

industrial process instrumentation
Device protection contributes to process success 
The performance of every process is critical to something or someone. Keeping a process operating within specification requires measurement, and it requires some element of control. The devices we use to measure process variables, while necessary and critical in their own right, are also a possible source of failure for the process itself. Lose the output of your process instrumentation and you can incur substantial consequences ranging from minor to near catastrophic.

Just as your PLC or other master control system emulates decision patterns regarding the process, the measurement instrumentation functions as the sensory input array to that decision making device. Careful consideration when designing the instrumentation layout, as well as reviewing these five common sense recommendations will help you avoid instrument and process downtime.

Process generated extremes can make your device fail.

Search and plan for potential vibration, shock, temperature, pressure, or other excursions from the normal operating range that might result from normal or unexpected operation of the process equipment. Develop knowledge about what the possible process conditions might be, given the capabilities of the installed process machinery. Consult with instrument vendors about protective devices that can be installed to provide additional layers of protection for valuable instruments. Often, the protective devices are simple and relatively inexpensive.

Don't forget about the weather.

Certainly, if you have any part of the process installed outdoors, you need to be familiar with the range of possible weather conditions. Weather data is available for almost anywhere in the world, certainly in the developed world. Find out what the most extreme conditions have been at the installation site....ever. Planning and designing for improbable conditions, even adding a little headroom, can keep your process up when others may be down.
Keep in mind, also, that outdoor conditions can impact indoor conditions in buildings without climate control systems that maintain a steady state. This can be especially important when considering moisture content of the indoor air and potential for condensate to accumulate on instrument housings and electrical components. Extreme conditions of condensing atmospheric moisture can produce dripping water.

Know the security exposure of your devices.

With the prevalence of networked devices, consideration of who might commit acts of malice against the process or its stakeholders, and how they might go about it, should be an element of all project designs. A real or virtual intruder's ability to impact process operation through its measuring devices should be well understood. With that understanding, barriers can be put in place to detect or prevent any occurrences.

Physical contact hazards

Strike a balance between convenience and safety for measurement instrumentation. Access for calibration, maintenance, or observation are needed, but avoiding placement of devices in areas of human traffic can deliver good returns by reducing the probability of damage to the instruments. Everybody is trained, everybody is careful, but uncontrolled carts, dropped tools and boxes, and a host of other unexpected mishaps do happen from time to time, with the power to inject disorder into your world. Consider guards and physical barriers as additional layers of insurance.

Know moisture.

Electronics must be protected from harmful effects of moisture. Where there is air, there is usually moisture. Certain conditions related to weather or process operation may result in moisture laden air that can enter device enclosures. Guarding against the formation of condensate on electronics, and providing for the automatic discharge of any accumulated liquid is essential to avoiding failure. Many instrument enclosures are provided with a means to discharge moisture. Make sure installation instructions are followed and alterations are not made that inadvertently disable these functions.

Developing a thoughtful installation plan, along with reasonable maintenance, will result in an industrial process that is hardened against a long list of potential malfunctions. Discuss your application concerns with instrumentation specialists. Their exposure to many different installations and applications, combined with your knowledge of the process and local conditions, will produce a positive outcome.

Industrial Control System Cybersecurity Primer - White Paper

Industrial control systems present unique
cybersecurity challenges

The International Society of Automation is offering a free white paper entitled “What Executives Need to Know About Industrial Control Systems Cybersecurity”. The article provides useful commentary and information that establishes the scope of cybersecurity in the industrial process control space and provides a basic framework for understanding how every process may be impacted by lax cybersecurity efforts. The author, Joseph Weiss, differentiates Industrial Control System (ICS) cybersecurity from that of organizational IT through a review of various attributes common to both types, including message confidentiality, integrity, time criticality, and more. Any reader’s awareness and understanding of the cybersecurity risks to their operation will be enhanced through this article. I finished reading the article wanting more on the subject, and ISA is certainly a resource for additional content.

A quote from the article...

“Cyber incidents have been defined by the US National Institute of Standards and Technology (NIST) as occurrences that jeopardize the confidentiality, integrity, or availability (CIA) of an information system.”

ICS cybersecurity extends beyond preventing malicious outside intruders from gaining access. It is an important part of maintaining the overall operating integrity of industrial processes. A holistic approach is advocated to identify physical risk factors to the process and its componentry (post on device protection), as well as vulnerabilities that may prevent exploitation by unauthorized parties. Weiss goes on to describe the role and qualifications of the ICS Cybersecurity Expert, essentially an individual that can function effectively as an IT cybersecurity tech with the added skills of an industrial control systems expert.

A synopsis of attack events is provided in the article, with the author’s conclusion that not enough is being done to secure industrial control systems and the risk exposure is substantial in terms of potential threats to personnel, environment, and economy. By providing your name and email address, you can obtain the white paper from the ISA website. Your time spent obtaining and reading the article will be well spent.

For any specific information or recommendations regarding our products and cybersecurity, do not hesitate to contact us directly. We welcome any opportunity to help our customers meet their process control challenges.

Two-Wire vs. Four-Wire Transmitter For Analog Process Measurement and Control Signals - What Really Matters?

DIN rail mount industrial two wire transmitter
One of many form factors of two wire transmitters
for industrial process measurement and control
Courtesy Telmar Instruments
Transmitters are everywhere in process control. They take a sensor output signal,amplify and condition it, then send it to monitoring and decision making devices. The most common analog electrical signal used for transmitting process control signals is a 4-20 mA (milliampere) current flow. It has succeeded in its adoption for a number of reasons, not the least of which are its resistance to interference and ability to transmit a signal across a substantial length of cable.

Aside from the sensor connection, there are two basic wiring schemes for these devices. The simplest employs just two conductors to transmit the signal and coincidentally provide operating power for the transmitter electronics. This type of transmitter is commonly referred to as a "loop powered" or "two-wire" device. A DC power supply, typically 24 volts, is wired in series with the 4-20 mA output signal and the transmitter derives its operating power from this source. Loop powered devices generally consume very little power, but process designers must consider the total resistance imposed on the loop by all connected devices. The cable, unless the length is monstrous, poses a measurable but comparatively small resistance. Careful consideration should be given to the resistance imposed by receiving devices, especially if there are several in series, receiving the loop signal. The output voltage of the power supply and the maximum tolerable voltage of the connected devices will serve as limiting factors on loop instrument quantity. Where they can be applied, two-wire transmitters offer a straight forward solution for delivery of analog process measurement signals.

industrial process control cable

A "four-wire" transmitter gets its name from, you guessed it, the two pairs of wires used to provide operating power and a signal transmission path. Provided with a separate power source, possibly even 120 volts AC, this transmitter type will often be found in applications where the sensor may have power requirements that cannot be met with the limitations inherent in the loop powered device. While it may seem that the separate power supply negates the need to consider total resistance load on the signal loop, this is not the case. The signal loop still will be limited by the DC power supply that serves as the driving force of the loop.

In many cases, the question of "two-wire or four-wire" will be answered by the transmitter manufacturer. Since the two-wire scheme is a less burdensome installation, it may be the only product offering when a suitable device can be designed for an application. That said, a diligent search will probably find two and four-wire versions of transmitters for almost every application.

What are some decision making guidelines?

  • Some types of transmitters have sufficiently high power requirements that they cannot be loop powered. In this case, four-wire may be the only option.
  • For low resistance loads, use 2 wire transmitters for a simpler installation.
  • Allow some headroom in the loop resistance to accommodate at least one added receiving device in the future. For example, a temperature signal may serve as an input to a controller now, but need to service a recording device potentially added in the future.
  • Distance should not be mindlessly overlooked, but is generally not a limiting factor, as most installations would be compatible with the distance limitations for two- or four-wire device output signals. 
  • When signal transmission distances become unwieldy, due to cabling costs or other factors, consider a wireless transmitter instead of a wired device.
The important aspect of applying 4-20 mA signal loops is to maintain the capability to add another receiving device to the circuit. The use of information in the form of process signals has been growing for a long time and is likely to continue. It is certainly easier to wire an additional device into an existing loop, than to install an additional sensor, transmitter, power supply, and cabling to accommodate the additional device. 

Analynk provides wired and wireless solutions for delivering analog process control signals. The wired devices carry the company's Telmar brand name. Wireless solution products carry the Analynk and Sensalynk brand name.