Showing posts with label instrumentation. Show all posts
Showing posts with label instrumentation. Show all posts

Turnkey Hazardous Area Wireless Enclosure/Access Point Solution: The Analynk AE902

A Class 1 Div 2, ATEX Zone 2 Wireless Access Point Enclosure with Aruba AP 318, Power Supply, Antennas and Optional ISA100A / WirelessHART

Enclosure | Explosion Proof Access Point | ATEX Wifi Access Point

The Analynk AE902 series includes the Aruba AP-318 dual band access point with an optional Honeywell FDAP2 for ISA100A / WirelessHART communication.  The Analynk AE902 is certified for use in Class I, Division 2 or ATEX Zone 2 hazardous areas. The unit's hazardous area enclosure protects an Aruba AP318 wireless access point, a dual band access point delivering gigabit Wi-Fi performance to 802.11ac mobile devices in harsh environments. The optional Honeywell FDAP2 is an industrial meshing access point for ISA100 Wireless and/or WirelessHART field instruments.

The Analynk AE902 also includes a PoE (Power over Ethernet) injector and universal input power supply. The enclosure is made of 316 stainless steel and has a NEMA 4X or IP66 rating for harsh conditions. Optional directional hazardous area antennas are available and can be mounted remotely from the enclosure.

For more information, contact Analynk Wireless. Call them at (614) 755-5091 or visit their website at https://analynk.com.

Wireless Process Instrumentation and Cloud-based Solutions

Wireless technologies and cloud computing systems are changing industrial communications. Industrial wireless networks and cloud-based tools, simply stated, allow manufacturing plants to do more with fewer people.

This two-part article delves into the recent trends in the use of cloud-based tools and wireless networks to help plant operators improve their application validation, improve their diagnostic selection of instrumentation, and improve device commissioning.

The benefits of wireless and mobile communications is clear. Engineers and other factory personnel can input data wirelessly via a smart phone, or a laptop computer so they can have their specific requirements recorded. Collaboration with other team members is possible, through the cloud, to determine the optimum set up for the project devices to streamline engineering decisions (and to avoid expensive mistakes upfront in the project). Information in the cloud may also be equipped for instant duplication, so projects that have many identical device configurations can be rapidly repeated.

Using a cloud-based and wireless network approach improves success in installing large numbers of new field instruments, which is common for unit expansion. Other benefits of adapting cloud-based services and wireless networks for prices control include:
  • A convenient way to share and collaborate in real-time. Multiple users can visualize the transmitter configuration though a link. This saves staff time and reduces travel time for support people. 
  • If a beginning user has an underdeveloped knowledge of the application, the cloud can provide readily accessible information such as compatibility charts, specification sheets, code requirements, etc … . 
  • Generation of a standard data sheet so engineers don't have to spend as much time on data entry. The data sheet can be stored to support the user's necessary documentation and audit trail. 

The paradigm for instrumentation setup is changing dramatically. Cloud-based tools and wireless communications are optimizing manufacturing operations and delivering capital projects cost effectively, efficiently, and as rapidly as possible.

Under increasing pressure for improved quality, safety, and profits companies are migrating toward cloud-based application, data storage and wireless networking. These new technologies are playing a key role in improving safety, lowering operating costs, providing real-time performance data, and continuously monitor processes.

Checklists for Industrial Wireless Systems Deployments

Checklists for Industrial Wireless Systems
The document "Guide to Industrial Wireless Checklists", developed by the National Institute for Standards and Technology, is intended to be a practical guide used by engineers and managers facilitating them to go through the process of defining the objectives of their wireless systems and examining the environments where the wireless systems are to be deployed, then helping them in selecting, designing, deploying, and monitoring the wireless systems using existing technology in a factory.

Checklists from the above referenced document have been culled and available here for download.



Analynk Wireless: Instrumentation for the Process Control Industry

Analynk Wireless is an innovative designer and supplier of wireless instrumentation for the process control industry. Our instruments have been successfully implemented in several applications including temperature measurements 4 to 20mA bridges, discrete inputs/outputs, pulse inputs, lighting and pump controls. These products have been used in both hazardous and non-hazardous locations. Analynk Wireless also manufactures a line of traditional wired instrumentation; see Telmar Instruments for details.

Piping & Instrumentation Diagrams in Process Control

electric power plant
All processes benefit from P&ID
P&ID's (Piping & Instrumentation Diagrams), or Process and Control Flow Diagrams, are schematic representations of a process control system, used to illustrate the piping system, process flow, installed equipment, instrumentation, and functional relationships among all the system components.

Intended to provide a comprehensive picture of all piping and associated hardware, including physical branches, valves, equipment, instrumentation and interlocks, the P&ID employs a set of standard symbols representing each component of the system such as instruments, piping, motors, pumps, etc. The use of standard symbols provides a universal depiction that can be read and understood by operators, technicians, outside contractors, and other similarly trained individuals.

P&ID’s can be very detailed and are generally the primary source from where instrument and equipment lists are generated, also being a very handy reference for maintenance and upgrades. P&ID’s also play an important early role in safety planning by enabling an understanding of the operating states and relationships of all components in the system.