Showing posts with label Wireless Networking. Show all posts
Showing posts with label Wireless Networking. Show all posts

Wireless Process Control Networks


In order to promote data sharing and analysis in embedded control networks, industrial plants, factories and process automation systems are increasingly deploying information and communications technologies. Despite the severe process control environment, as well as loss of signal propagation and interference with radio frequency (RF), wireless connections provide quick and simple access to a multitude of field tools, reducing network installation expenses and continuing maintenance outlays. This serves as an incentive to adopt industrial wireless networks depending on industry norms such as ISA100.11a, a wireless networking technology standard established by ISA (International Automation Society) and WirelessHART, a wireless sensor networking technology based on the Highway Addressable Remote Transducer Protocol (HART). 

However, wide-ranging acceptance is tentative, as industrial environments differ extensively and process control systems have a variety of critical demands for wireless networking, such as:
  • Long-term durability.
  • Low-cost operation.
  • High reliability in the harsh radio propagation environment.
  • Deterministic transmissions in shared wireless bandwidth.
Wired connections have proved efficient in promoting reliable, point-to-point communication between controller and field tools. Wired links, however, have a difficult restriction - they are unable to meet the increasing demands and future requirements to support adaptive network topology and fast reconfiguration found in new process control systems. 

Instead of setting miles of wires to connect hundreds of field tools, industrial wireless communication networks provide tailored network topology wireless links, enable plug-and-play setup, and provide reduced installation and maintenance costs.

Compared to the demands of conventional Internet data services, the requirements of wireless service quality (QoS) in the process control environment are more stringent. In mobile use cases, these include more extremely reliable transmissions as well as centralized data analytics, tighter message latency, and reduced power consumption.

For more information about wireless networking in the industrial space, contact Analynk Wireless. Visit their website at https://analynk.com, or call them at 614-755-5091.

US Power Grids, Oil and Gas Industries, and Risk of Hacking

A report released in June, from the security firm Dragos, describes a worrisome development by a hacker group named, “Xenotime” and at least two dangerous oil and gas intrusions and ongoing reconnaissance on United States power grids.

Multiple ICS (Industrial Control Sectors) sectors now face the XENOTIME threat; this means individual verticals – such as oil and gas, manufacturing, or electric – cannot ignore threats to other ICS entities because they are not specifically targeted.


The Dragos researchers have termed this threat proliferation as the world’s most dangerous cyberthreat since an event in 2017 where Xenotime had caused a serious operational outage at a crucial site in the Middle East. 

The fact that concerns cybersecurity experts the most is that this hacking attack was a malware that chose to target the facility safety processes (SIS – safety instrumentation system).

For example, when temperatures in a reactor increase to an unsafe level, an SIS will automatically start a cooling process or immediately close a valve to prevent a safety accident. The SIS safety stems are both hardware and software that combine to protect facilities from life threatening accidents.

At this point, no one is sure who is behind Xenotime. Russia has been connected to one of the critical infrastructure attacks in the Ukraine.  That attack was viewed to be the first hacker related power grid outage.

This is a “Cause for Concern” post that was published by Dragos on June 14, 2019

“While none of the electric utility targeting events has resulted in a known, successful intrusion into victim organizations to date, the persistent attempts, and expansion in scope is cause for definite concern. XENOTIME has successfully compromised several oil and gas environments which demonstrates its ability to do so in other verticals. Specifically, XENOTIME remains one of only four threats (along with ELECTRUM, Sandworm, and the entities responsible for Stuxnet) to execute a deliberate disruptive or destructive attack.

XENOTIME is the only known entity to specifically target safety instrumented systems (SIS) for disruptive or destructive purposes. Electric utility environments are significantly different from oil and gas operations in several aspects, but electric operations still have safety and protection equipment that could be targeted with similar tradecraft. XENOTIME expressing consistent, direct interest in electric utility operations is a cause for deep concern given this adversary’s willingness to compromise process safety – and thus integrity – to fulfill its mission.

XENOTIME’s expansion to another industry vertical is emblematic of an increasingly hostile industrial threat landscape. Most observed XENOTIME activity focuses on initial information gathering and access operations necessary for follow-on ICS intrusion operations. As seen in long-running state-sponsored intrusions into US, UK, and other electric infrastructure, entities are increasingly interested in the fundamentals of ICS operations and displaying all the hallmarks associated with information and access acquisition necessary to conduct future attacks. While Dragos sees no evidence at this time indicating that XENOTIME (or any other activity group, such as ELECTRUM or ALLANITE) is capable of executing a prolonged disruptive or destructive event on electric utility operations, observed activity strongly signals adversary interest in meeting the prerequisites for doing so.”

Top 6 Reasons to Deploy Wireless Networking in Industrial Facilities

Wireless technologies offer great value over wired solutions. A reduction in cost is just one of the many benefits of switching to the wireless networking system. There are many benefits, including enhanced management of legacy systems that were previously not possible with a wired networking connection. Here is an overview of some of the value-added benefits of adopting wireless networking in industrial plants.

#6 - Efficient Information Transfer

A significant advantage over wired networks is that the time required to reach a device is reduced. This results in a more efficient transfer of information between network segments that are geographically separated. The industry wireless networking standards use IP addresses to allow remote access to data from field devices.

#5 - Operational Efficiencies

Migrating to wireless networking can help in improving operational efficiencies as well. Plant managers can troubleshoot and diagnose issues more easily. The system facilitates predictive maintenance by allowing the monitoring of remote assets.

#4  - Enhanced Flexibility 

Enhanced flexibility is another reason for deploying wireless networking solutions in an industrial setting. Additional points can be awarded easily in an incremental manner. The wireless system can also integrate with legacy systems without any issues.

#3 - Improved Information Accuracy 

Adopting wireless networking also results in improved accuracy of information. The wireless system is not prone to interferences. As a result, the system ensures consistent and timely transfer of information from one node to another.

#2 - Reduced Installation Costs

Savings in installation costs is the key benefit of a wireless networking system. The cost of installing a wireless solution is significantly lower as compared to its wired counterpart. Installing a wireless network requires less planning. Extensive surveys are not required to route the wires to control rooms. This reduced installation cost is the main reason industrial setups should consider going wireless instead of having a wired networking system.

#1 - Human Safety 

The most significant factor that should influence the decision to migrate to wireless networking is the human safety factor. Wireless technologies allow safer operations, reducing exposure to harmful environments. For instance, a wireless system can be used in taking a reading and adjusting valves without having to go to the problematic area to take measurements.

Analynk Wireless, LLC
(614) 755-5091