Showing posts with label industrial wireless. Show all posts
Showing posts with label industrial wireless. Show all posts

Hazardous Area Access Point Enclosures for Safety, Reliability, Convenience and Cost Savings

Hazardous Area Access Point Enclosures


Industrial wireless networks are a much-needed solution for hazardous areas where wired connections are impossible. Wireless networks are also an ideal choice for temporary or mobile applications.


Industrial Wireless Networking is a newer technology quickly becoming the standard for companies that need to transmit data wirelessly in hazardous areas. Industrial wireless networks are gaining traction in hazardous areas with distinct advantages over hard wiring. However, some disadvantages make it less desirable than hard wiring.


Industrial wireless networks are a cost-effective solution to provide reliable, secure, and fast internet access in hazardous areas. In recent years, the demand for industrial networks increased with the increasing popularity of IoT (Internet of Things). This industrial network segment is seeing a surge in demand as more instruments and supervisory control systems connect their devices to the Internet.


Wireless has been a solution to many challenges faced in industrial networking, from remote locations to temporary installations, with the convenience of mobility and reduced installation costs.  


An access point is a device that establishes a wireless local area network, often known as a WLAN. An access point uses Ethernet to connect to a wired router, switch, or hub and broadcasts a WiFi signal to a specific region of a building or plant. However, a significant challenge remains: how to prevent access points from causing ignition and protect the access point against harsh environmental conditions? 


Hazardous Access Point Enclosures
 are enclosures used to protect wireless access points in hazardous areas. They provide safety to the wireless network equipment and the people who work in the area.

Some of the hazards that might be present in a hazardous area include combustible gases, oxygen-rich atmospheres, and flammable dusts. These hazards can cause a fire or explosion if they come into contact with an open flame, spark, or heat source.


To ensure that access point devices can operate reliably in hazardous environments such as oil rigs or chemical plants, they need protection from combustible gases, dust particles, and corrosive chemicals.


The need for Hazardous Access Point Enclosures is increasing daily due to new wireless network technology and are a requirement for all access points operating in hazardous industrial areas. These enclosures protect the access points from dangerous areas and environments. They have various features to ensure the environment is protected and secure for the personnel working in the area.


Some of these features include:


  • Compliance with international standards
  • Resistance to extreme temperatures
  • Permits installation in any location within a hazardous area
  • Protection against dust and water ingress


Industrial wireless networks have a lot of benefits over hard wiring. The lack of wires makes installing and moving around in hazardous areas easy. In addition, you can eliminate the cost and hassle of having to replace or repair wires if they break or get cut. Access points are critical components of industrial networks, and Hazardous Area Enclosures are an essential safety measure for access point manufacturers when applying their products in these settings.

Industrial Wireless Networking Considerations

Industrial Wireless Networking Considerations

Implementation of complex monitoring and control processes by industrial automation systems in the chemical industries, power plants, oil refineries, and water delivery systems are typical. The industrial networks for process automation at these sites typically encompass broad areas, with highly dense networks with hundreds or thousands of nodes. 

The harsh industrial environment presents several obstacles for wireless communications, the most significant of which are dependability, fault-tolerance, and low latency. Unpredictable changes in temperature, humidity, vibrations, and pressure and the presence of highly reflective (metal) items and electromagnetic noise make industrial surroundings stressful.

In these installations, thousands of devices provide measured values (such as temperature, pressure, flow, and location) to actuators that control processes and servers that coordinate the manufacturing steps. Wiring is often tricky and expensive, particularly in combustible and explosive areas (for example, in the presence of flammable gases in an oil refinery.) Remote or inaccessible places are difficult to reach, and mobile nodes can only be connected intermittently.  Even though the amount of data is relatively low in an industrial application, dependability and latency are crucial, and complete data delivery in real-time is a must. 

Key constraints that hinder the actual deployment of wireless networks in such settings are battery capacity and device power consumption. Communication and power wires, ideally, can be eliminated to provide a completely wireless system. To that end, the devices should be energy efficient and capable of running for years on a single charge from a battery. Furthermore, wireless networks bring logical benefits to maintenance and commissioning, such as "plug-and-play" automation systems to reduce downtime and speed up tests, as well as "hot-swapping" malfunctioning modules.

Wireless Communication Terminology and Definitions

Wireless Communication Terminology and Definitions

Antenna – A device that converts electrical energy into propagating electromagnetic waves or the reverse.

Antenna Polarity – The orientation of the directionality of electromagnetic waves produced by an antenna. Common polarities are vertical, horizontal, and circular. Receive antennas should be oriented such that its polarity matches that of the transmitting antenna polarity.

Bandwidth – The amount of spectrum occupied by a signal. For example, a standard IEEE 802.11g transmission will use a nominal 22 MHz of bandwidth. An IEEE 802.15.4 transmission on which ZigBee, WirelessHART, and ISA100 Wireless are designed will use a nominal 5 MHz of bandwidth.

Carrier – A single frequency sinusoidal signal represented by a vertical line or spike in frequency.

Channel – A term used to identify a physical communications link and includes the characteristics of the entire path of information flow from transmitter to receiver. A channel is defined by electrical and electromagnetic characteristics of the transmission medium such as bandwidth and distortions.

Interference – RF power, typically in the RF band of interest, that disrupts communications by inhibiting the ability of a receiver to decode a transmission. Sources of interference could include anything that radiates electromagnetic (EM) energy such as machinery and undesirable radio devices.

Signal-to-Noise Ratio (SNR) – Ratio of signal power to naturally occurring emissions such as thermal noise and cosmic background radiation. Maximizing SNR is the primary goal of wireless communications.

Signal-to-Noise-And-Interference Ratio (SNIR) – Ratio of signal power to the sum of naturally occurring noise power and interference power. Minimizing the contribution of interference to SNIR is an important goal of a wireless communications system.

Power Decibels – A logarithmic representation of a voltage or power relative to a reference. Power is converted to decibels by the equation 10 P  10log p . The notation dBW and dBm represent power levels relative to 1 Watt and 1 milliwatt, respectively. The notation dB denotes a ratio of two numbers and should not be used to denote power.

Link Budget – Calculations that predict the probability that a transmission will be successfully detected and decoded by the receiver. A link budget will account for transmission power, signal formatting, noise, signal distortions, interference, receiver characteristics, and the link reliability requirements.

Link Margin – The difference in decibels (dB) between the ability of a receiver to successfully receive a transmission and the expected minimum received power. A link margin of 10 dB indicates that a signal could be attenuated by an additional factor of 10 before it can no longer be received. A link margin should accommodate reasonable unexpected attenuations, distortions, and interference not directly addressed by the link budget.

Transmitter – The device responsibility for transmitting information wirelessly.

Transmit Power – the average amount of RF energy per unit power emitted by the transmit antenna. This is typically specified in Watts, dBW, or dBm.

Bit Rate – The average or peak amount of data transmitted during an interval of time. This is represented as bits per second (bps).

Duty Cycle – The percentage at which a transmitter is active.

Modulation – The method by which information is used to modify the behavior of an RF carrier. Different modulations exist such as amplitude modulation (AM), frequency modulation (FM), and phase modulation (PM). Digital modulations are discrete versions of the above modulations. Common modulations used in industrial communications include binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), and quadrature amplitude modulation (QAM), among others. Wi-Fi uses a combination of BPSK, QPSK, and QAM depending on channel quality.

Error Control Coding (ECC) – A method to increase reliability of a communications link by adding data redundancy that can detect and correct errors produced by the channel. ECC increases the amount of bandwidth requirements or decreasing the amount of useful information over a channel.

Frequency Hopping (FH) – A process by which the carrier frequency is changed during or between transmissions accordingly to a pre-defined synchronized method. With FH, transmitter and receiver must tune to the same frequency at precisely the same time. FH hopping adds a layer of complexity to a system but also makes interception or disruption of the wireless system more difficult, thereby making the system more reliable.

Spread Spectrum – A process of spreading RF energy beyond what is needed to transmit information for the purpose of improved medium access, better interference immunity, or minimization of signal detection.

Payload – The information being transmitted. The size of the payload factors into transmission duration. All communication systems have a limit to the size of a payload before fragmentation is required. Not all communication systems support fragmentation. At the lowest layers of a communication system, the payload includes all data encoding and framing.

Receiver – The device responsible for decoding incoming transmissions in accordance with an established protocol.

Received Signal Strength Indicator (RSSI) – A measurement of received signal power.

Received Signal Quality Indicator (RSQI) – A measurement of the quality of the received signal

Sensitivity – The minimum signal strength, SNR, or SNIR required by a receiver to decode an incoming transmission.

Adjacent Channel Interference (ACI) – RF energy that is adjacent to the channel containing a desired signal.

Adjacent Channel Rejection (ACR) – The ability of the receiver to suppress ACI.

Dynamic Range – The difference between the maximum and minimum received signal power. A large dynamic range is particularly helpful in accommodating strong ACI that leaks past RF filtering.

Selectivity – The ability of a device to decode a transmission on one frequency without interference from transmissions on other frequencies.

Reprinted from Guide to Industrial Wireless Systems Deployments by the National Institute of Standards and Technology.

Analynk Wireless
(614) 755-5091

Coming This June: Analynk's Hazardous Area 4G LTE Antenna

Hazardous Area 4G LTE Antenna

Analynk Wireless, an innovative manufacturer of hazardous area antennas and access point enclosures and wireless instrumentation for the process control industry, announced a 4G LTE antenna rated for Class I, Division 1 Groups C & D, ATEX, and IECEx Zone 1 areas.

4G, which stands for "Fourth Generation," is a standard developed by the International Telecommunications Union (ITU) in 2008, established explicitly by the ITU-R. (which deals with radio communications). Today, 4G is better known for its broadband capabilities and dramatically higher speed than 3G, which pioneered data access in the cellular space. 

The ITU standard mandated a minimum download speed of 100 Mbps, which was highly hypothetical at the time. In reality, several years later, carrier networks are only now realizing these goals. A wireless network must be capable of downloading at a rate of at least 100 Mbps to qualify as true 4G.

Analynk will introduce the new product this June 2021.

For more information, contact Analynk Wireless, LLC, 790 Cross Pointe Road, Columbus, OH 43230

Call them at 614-755-5091 or visit https://analynk.com.

Antennas Designed for Hazardous-Classified, Industrial Hardened Applications

Antennas Designed for Hazardous Areas

Wireless communication has seen increasing prevalence in the industrial process measurement and control field for several years.  It has provided years of reliable communications for monitoring and controlling processes, where using cables is either too costly or impractical. The absence of wires saves space, reduces the potential for damage, and simplifies modifications to the equipment layout. Implementing wireless communications in hazardous areas, whether through WiFi or other radio frequency channels, presents a particular set of challenges to successful implementation. Points of network access and further transmission and receiving equipment can require a level of isolation and hardening appropriate for the hazardous environment. In response to customers' desire to incorporate the technology across an ever-widening array of application scenarios, vendors continue developing and releasing new products and technologies that expand the potential for industrial wireless communication.

Many industrial process control operations can benefit from wireless connections between measurement and control devices. Analynk Wireless provides patented hazardous area explosion-proof antennas for industrial installations. Analynk antennas are operable across an extensive temperature range and provide substantial impact resistance, signal output, and third-party ratings for hazardous environments. These rugged antennas are for global application in the industrial process control field. Analynk hazardous area antennas are very robust and intended for industrial applications. All hazardous area antennas have UL listed Class I, Groups C and D, ATEX/IECEx Certification, and range of frequencies available- from 900MHz, 2.4GHz, and Cellular GPS, 4G, Iridium, and dual bands.

For more information, contact Analynk Wireless.
(614) 755-5091

Evaluation of the Technologies Potentially Suitable for IWSAN Solutions Covering an Entire Industrial Site With Limited Infrastructure Cost and Trade-Offs

Wireless Technologies

An excellent 2020 publication from the National Center for Biotechnology Information, U.S. National Library of Medicine on industrial wireless technologies:

Turnkey Hazardous Area Wireless Enclosure/Access Point Solution: The Analynk AE902

A Class 1 Div 2, ATEX Zone 2 Wireless Access Point Enclosure with Aruba AP 318, Power Supply, Antennas and Optional ISA100A / WirelessHART

Enclosure | Explosion Proof Access Point | ATEX Wifi Access Point

The Analynk AE902 series includes the Aruba AP-318 dual band access point with an optional Honeywell FDAP2 for ISA100A / WirelessHART communication.  The Analynk AE902 is certified for use in Class I, Division 2 or ATEX Zone 2 hazardous areas. The unit's hazardous area enclosure protects an Aruba AP318 wireless access point, a dual band access point delivering gigabit Wi-Fi performance to 802.11ac mobile devices in harsh environments. The optional Honeywell FDAP2 is an industrial meshing access point for ISA100 Wireless and/or WirelessHART field instruments.

The Analynk AE902 also includes a PoE (Power over Ethernet) injector and universal input power supply. The enclosure is made of 316 stainless steel and has a NEMA 4X or IP66 rating for harsh conditions. Optional directional hazardous area antennas are available and can be mounted remotely from the enclosure.

For more information, contact Analynk Wireless. Call them at (614) 755-5091 or visit their website at https://analynk.com.

Industrial 5G Communications

Industrial 5G Communications
Smartphone users aren't the only ones waiting for 5g. Industrial companies are patiently looking forward to the new 5G wireless mobile standard. Owners and operators see industrial 5G as key to making their production plants and operations more flexible, more autonomous, and more efficient than ever before.

Today, most industrial facilities still communicate via wires and cables. With the advent and adoption of the new 5G communications standard, that will all change. 

With 5G peak download speeds of 20 Gb/s (gigabits per second) and 5G peak upload speeds of 10 Gb/s, wireless data transmission for comprehensive factory networks and equipment will communicate at speeds comparable or better than cables. 

The potential of 5G implementation is truly mind boggling, particularly when you consider its huge effect on Industry 4.0, making factories much more productive and less costly to operate. 5G technology has the potential to integrate picking systems, industrial robots, quality control systems, warehousing and autonomous vehicles - harmoniously tying the entire manufacturing process together through a secure, ultrafast, and robust network.

All major industries, including chemicals, primary metals, water treatment, automobiles, aerospace, power generation and oil & gas production, are biding their time and evaluating the promise of 5G's features for their processes. For example, factories will be able to simultaneously transmit data for an astounding 1 million IIoT devices per square kilometer! This easily accommodates all the wireless field instruments for a production line or even an entire plant. Speeds for industrial 5G are at the lower end of the millisecond range. This means instant response to systems upsets or process abnormalities. With 5G, the virtues of augmented reality in the industrial environment will be fully realized, opening the door for a new level of interchange between man and industrial process.

There’s nothing new about wireless communication in industry. Private LTE (Long-Term Evolution) networks are already being used, and process control equipment companies have been successfully implementing Industrial WLAN for quite some time. But since 5G is not yet widely available, Industrial WLAN research and development continues in parallel. However, these networks are nowhere near 5G in terms of performance and speed. 

Even though the international mobile radio standards organization 3GPP (3rd Generation Partnership Project) published the commercial mobile wireless network standard for 5G in late 2018,  there still are no published standards for the industrial 5G. 3GPP expects to have that completed by the middle of 2020.

Analynk Wireless, LLC
(614) 755-5091

Industrial Wireless Systems Radio Propagation Measurements

Radio frequency (RF) propagation measurements were conducted at three facilities representing a cross-section of different classes of industrial environments. Selected sites included a multi-acre transmission assembly factory typical of the automotive industry; a small-sized machine shop primarily engaged in metalworking located on the NIST campus in Gaithersburg; and a steam generation plant located on the NIST campus in Boulder. A spread spectrum correlation sounder was used to take the measurements at a continuum of points throughout the facility by fixing the transmitter and moving the receiver at a constant rate throughout each facility. The data collected from the RF propagation measurements of each site was analyzed. Analysis is based on channel impulse response (CIR) measurements collected during the measurement using equipment developed by the National Institute of Standards and Technology. The results of the analysis include a tabulated summary and detailed exploration of various industry accepted channel metrics such as path loss, delay spread, and K factor. Interpretation of the measurements contributes to an improved understanding of radio frequency propagation in factories and an additional perspective on deploying wireless communication devices within factories.

This technical paper, provided by the National Institute of Standards and Technology (NIST), addresses concerns about the lack of industrial wireless networking reliability, determinism, and security through a multi-phased approach.


Analynk Wireless
(614) 755-5091
https://analynk.com

Top 6 Reasons to Deploy Wireless Networking in Industrial Facilities

Wireless technologies offer great value over wired solutions. A reduction in cost is just one of the many benefits of switching to the wireless networking system. There are many benefits, including enhanced management of legacy systems that were previously not possible with a wired networking connection. Here is an overview of some of the value-added benefits of adopting wireless networking in industrial plants.

#6 - Efficient Information Transfer

A significant advantage over wired networks is that the time required to reach a device is reduced. This results in a more efficient transfer of information between network segments that are geographically separated. The industry wireless networking standards use IP addresses to allow remote access to data from field devices.

#5 - Operational Efficiencies

Migrating to wireless networking can help in improving operational efficiencies as well. Plant managers can troubleshoot and diagnose issues more easily. The system facilitates predictive maintenance by allowing the monitoring of remote assets.

#4  - Enhanced Flexibility 

Enhanced flexibility is another reason for deploying wireless networking solutions in an industrial setting. Additional points can be awarded easily in an incremental manner. The wireless system can also integrate with legacy systems without any issues.

#3 - Improved Information Accuracy 

Adopting wireless networking also results in improved accuracy of information. The wireless system is not prone to interferences. As a result, the system ensures consistent and timely transfer of information from one node to another.

#2 - Reduced Installation Costs

Savings in installation costs is the key benefit of a wireless networking system. The cost of installing a wireless solution is significantly lower as compared to its wired counterpart. Installing a wireless network requires less planning. Extensive surveys are not required to route the wires to control rooms. This reduced installation cost is the main reason industrial setups should consider going wireless instead of having a wired networking system.

#1 - Human Safety 

The most significant factor that should influence the decision to migrate to wireless networking is the human safety factor. Wireless technologies allow safer operations, reducing exposure to harmful environments. For instance, a wireless system can be used in taking a reading and adjusting valves without having to go to the problematic area to take measurements.

Analynk Wireless, LLC
(614) 755-5091

Industrial Wireless Security

Industrial Wireless Security
Industrial control systems (ICS) cybersecurity is a branch of general cybersecurity in which the systems being protected have physical characteristics which if compromised can lead to down-time, injury or death, and economic loss.

Industrial control systems include supervisory control and data acquisition (SCADA) systems, localized work-cells, enterprise control systems, and cloud-based factory collection systems. Traditional information technology (IT) systems differ from operational technology (OT) systems primarily in their cybersecurity priorities. In general, IT systems defend against data extractions. Encryption used to provide confidentiality is of primary concern. In OT systems, confidentiality is no longer of paramount concern. While eavesdropping can lead to reverse engineering of proprietary factory methods and design, it is usually more important to keep the factory running. Therefore, technologies must assure that both cybersecurity controls and cyber-attack do not limit or prevent the capability of the factory running with high availability. Table 1 lists the priorities of IT and OT systems. It is important for IT professionals to recognize that wireless security practices used in the office may not be available for factory deployments. If they are available, they may not be desirable to maintain system availability. Securing the industrial network can be summarized in the following considerations:
  • Secure the physical environment; 
  • Secure the end-points; 
  • Secure the controller; 
  • Secure network transmissions/data. 
Industrial wireless networks have the same consideration as wired networks with the addition of protecting the electromagnetic spectrum allocated for the industrial wireless network operation.
Table 1 - Typical Priorities of IT and OT Systems
The number of devices connecting to industrial networks is increasing at a rapid rate. It exposes systems to security breaches and cyberattacks. As a result, security is paramount for industrial operations. Some manufacturers think wireless will create new vulnerabilities in the network that may result in potential threats. Just making the wireless network accessible through a password is not adequate. One key concern is how to identity and eliminate rogue access points. Therefore, wireless intrusion detection systems and intrusion prevention systems are in demand.

In addition, isolation of production devices on a separate network from corporate networks, internet traffic, and phone and surveillance systems is necessary. In other words, one can employ an “island” approach to networking that limits the movement of traffic and devices between islands. By properly segmenting a network, it can limit movement between networks to appropriate devices and block the movement of devices that are unnecessary or provide little value.


Reprinted from Guide to Industrial Wireless Systems Deployments produced by The National Institute of Standards and Technology. A free copy of this entire publication is available here.

Reliability of Wireless Instrumentation in Oil & Gas Industry

Wireless Instrumentation in Oil & GasAbstract

Wireless technologies are integrated into almost every part of our daily lives. Wireless technologies for Instrumentation offers significant cost savings such as faster commissioning, efficient maintenance when compared to traditional wired networks. The value of this cost savings are particularly significant in the highly competitive Oil and Gas industry, where aging facilities are common and upgrades are expensive. There are still some uncertainties on Wireless technologies in the industry due to its unknown performance characteristics such as stability and reliability of wireless communications at offshore and onshore facilities. Due to this, the acceptance of wireless instrumentation in the oil and gas industry has been slow even though the first wireless sensors are available since 2007. Reliability of wireless Instrumentation is critical as automation systems rely on accurate information for operators to make informed decisions for control and safe operations.

1. Introduction

As the world’s oil giants are looking for new ways to improve costs in engineering, commissioning, installation and operations, wireless instrumentation represents major cost savings through elimination of local field cable, associated field-run cable trays and ease of maintenance. The production facilities are more often subject to changes which are expensive and wireless instrumentation provides flexibility to a larger degree compared to the traditional wired instruments during such upgrades. For offshore facilities, weight savings is also a preferred advantage introduced by wireless instrumentation. The main contributions to weight savings for wireless instrumentation also comes from the elimination of cabling, cable trays, junction boxes, I/O cabinets and so on. In Brownfield projects, the significance of cost savings and weight reduction by using wireless instrumentation is even higher.

There are challenges to use wireless technologies for control and safety applications. For control applications, the requirement is to have a common timing domain for all components in the system. This means that the clocks of wireless sensors and actuators and the wireless gateway should be synchronized with the clocks of the controllers and control system. For most safety applications, continuous monitoring is necessary and a short response time needs to be guaranteed if a safety critical situation arises. Thus the primary difficulty in designing a wireless safety system is having a guaranteed short latency while not depleting the batteries. In addition, full control of all network message traffic is required, and loss of contact with a device must be identified immediately.

2. ISA 100.11a and WirelessHART

WirelessHART enables wireless transmission of HART messages, and was the first standard to be released which specifically targets industrial applications. Wireless HART was approved as IEC standard 62591 in 2010. The standard WirelessHART Architecture is shown in Figure 1. The Wireless HART devices are devices with WirelessHART built in or an existing installed HART- enabled device with a WirelessHART adapter attached to it and Wireless Access points enable communication between these devices and host applications connected to a high-speed existing plant communications network. ISA100.11a standard compliant wireless devices demonstrated interoperability in the same network and communication performance of the multiple vendor devices are nearly the same. Both WirelessHART and ISA100.11a are based on the IEEE Std. 802.15.4 PHY and MAC, although the MAC has been modified to allow for frequency hopping.

Furthermore, WirelessHART and ISA100.11a operates in the popular 2.4 GHz band, which allows for global availability. TDMA with frequency hopping is used as channel access method, and with a full mesh network topology, Wireless HART offers self-configuring and self- healing multi-hop communication.

ISA100.11a wireless technology offers sufficient performance to provide a secure, stable and reliable network for non-critical monitoring and control applications deploying into actual field sites. ISA100.11a supports both routing and non-routing devices, so network topologies can be either star, star-mesh or full mesh depending on the configuration and capabilities of the devices in the network. An ISA100.11a network is able to carry multiple field bus protocols, such as Foundation Fieldbus, PROFIBUS and HART. There is also integrated support for IPv6 traffic and routing in the network layer.

Both standards are designed to support scalability, low energy consumption, ability to work in legacy environments, security, and ability to function fully in environments where devices must coexist with our wireless devices and networks. The strict and limited approach of WirelessHART ensures that practically all WirelessHART devices will have identical behavior, regardless of design and implementation choices made by the equipment providers. The wide range of available optional and configurable parameters in ISA100.11a allows for great flexibility for adapting network behavior to various application requirements. WirelessHART is a wireless extension of the wired HART Field Communication Protocol Specification. The ISA100.11a application layer is object oriented, and implements tunneling features that allow devices to encapsulate foreign protocols and transport them through the network.

Wireless Network Architecture
Figure 1. Wireless Network Architecture

3. Security

Security is always a concern in any network, wireless networks are considered to present distinctive challenges. Because the wireless transmissions can travel for a considerable distance, it is important that the network be adequately secured against monitoring and intrusion. The WirelessHART standard mandates that networks employ a multilayered approach to network security. Both transmitter and receiver must authenticate with the network control system. Transmissions are encrypted using a 128-bit NIST-certified algorithm and verified for completeness and accuracy upon reception. Keys are managed by the gateway and rotated automatically. This combination of authentication, encryption, verification, and key management makes a wireless network as secure as a wired system.

4. Cost Savings

A wireless network requires none of the infrastructure improvements like cost of a measurement loop in the cable, conduit, and multiplexing hardware required to connect the sensor to the facility’s DCS (Distributed Control System), and the resultant savings are substantial. Perhaps the most attractive attribute of a wireless network is that installation cost is significantly reduced when compared with that of an equivalent wired system. A wireless network requires none of these infrastructure improvements, and the resultant savings is significant.
In addition to delivering significant labor and material cost reductions, deploying wireless networks can be done much faster and with lower project management overhead. Once installed, wireless networks can be easily and inexpensively expanded to include additional measurements points for simply the cost of the transmitter. With an installed wireless network this investment can be further leveraged by providing wireless coverage in different parts of the facility. The wireless networks now a days only requires minimal maintenance as the advanced transmitters utilize Time Synchronized Mesh Protocol (TSMP) to carefully control the timing of each transmission. This enables each transmitter to keep its radio and processor powered down until it is time to send or receive a transmission due to which battery life typically lasts for several years. Wireless Instrumentation are self-organizing and eliminates site surveys.

5. Reliability

The primary concern of reliability with wireless networks is based on the assurance of data transmission from the field device to the WirelessHART gateway. The WirelessHART auto routing meshing capabilities are spontaneously managed and result in quick resumption of service in data transmission links in the event of a hindrance. This auto routing capability minimizes or eliminates data transmission interruption. Since data transmission is digital, the data measured or transmitted to the field device reflects values at the automation system. To ensure reliability, digital wireless protocols such as WirelessHART have inherent error checking functions to ensure signals don’t suffer from drift or spikes, any corrupt data is flagged and retransmission is requested, retransmission mechanisms to resend data if it becomes corrupt, reconstruction of partially scrambled data packets.
Electronic Wave Interference is the greatest barrier for adoption of industrial wireless technology for automation in oil and gas industries. Process automation production facilities are constructed using a large amount of metal equipment such as tanks, boilers, pipes, and mounting apparatus. As a result, the facility itself is the main obstacle for wireless communication technology because metal materials readily reflect radio waves. Technologies such as Frequency-Hopping Spread-Spectrum (FHSS), Direct-Sequence Spread-Spectrum (DSSS) Technology or Orthogonal Frequency Division Multiplexing should be considered so that data signals travel through a radio frequency.

Modern wireless networks offer a reliable upgrade path that even provides some surprising benefits when compared to traditional copper networks. With wireless technology, inherent mechanisms make use of redundant paths to route data. Wireless repeaters can be added to increase the reliability of a specific wireless network, and reliability can be further enhanced by the use of redundant gateways. Including WirelessHART as part of the core design of the field device network infrastructure creates inherent design flexibility, which can be used to increase reliability and reduce required maintenance. This allows network design to include the use of wired fieldbus and wireless networks depending on the specific application. Using wireless field devices and networks as an additional technology will enhance the overall robustness of the field device network architecture. It will also save time in terms of inspections, while eliminating potential for design error and reducing complexity. Fewer wires mean reduced design intervention in terms of routing and terminations, and faster repairs in the event of any incidents.

Design for wireless instrumentation should start from the planning phase and before commissioning of the wireless network by performing the site engineering to ensure a good network design, considering communication distances, extent of obstructions, multipath environments. Conduct the network engineering such as layout planning, data publishing period, number of retries. Validate the network planning by measuring RSSIs and PERs at the pre-commissioning stage after deploying the devices.

To ensure Wireless Instrumentation is stable and reliable, use a license-free and application-free radio spectrum throughout the world so that the wireless radios behave the same in different countries or regions; design field devices for low power consumption for small battery sizes and long battery life; Implement data encryption schemes, device authorization in networks and, certification of devices to address security concerns; include communication re-try functions and provide flexibility for network configurations for stability and reliability of communications, implement channel-hoping scheme and channel black/white listing capabilities for co- existence with or interference from other wireless radio applications sharing the 2.4GHz spectrum. To mitigate the effects of interference, wireless protocols may employ various coexistence mechanisms. In WirelessHART and ISA100.11a, clear channel assessment (CCA) and channel blacklisting are the weapons of choice to combat the degrading influence from other wireless networks.

6. Conclusion

Oil and Gas industry may still retain wired instrumentation for implementing critical control and safety instrumented loops, and for processes requiring high speed communications. There are still concerns that high speed applications may not be suitable for wireless due to potential lags in communications, or asynchronous communications between wireless devices. The recommendations by experts are to use wireless where it is most appropriate to supplement and enhance the overall integrity of the I/O infrastructure such as wireless instruments are changing the scope of what is possible in process analytical measurement. Implementing wireless instrumentation in instances like offshore drilling or well head monitoring application will certainly save costs and provides safety in the risky and extreme offshore conditions.

As experience with wireless technology grows, this attitude is shifting, with wireless becoming the default user selection for well-proven applications. Their low cost and ease of implementation make it practical to measure points that are prohibitively expensive to wire. The improvements in process awareness and redundant measurement allow oil and gas operators to tighten process control, increase performance and extend the time between maintenance shutdowns. In situations where speed-of-deployment and time-to-revenue are critical, wireless is by far the best alternative. New advanced wireless systems provide comprehensive solutions for implementing a modern self-organizing network.

New development projects should plan with a wireless strategy in mind. Even though development projects traditionally rely on well proven technology, time has definitely come to offer wireless technology the attention it deserves in the planning process considering the cost benefits it offers for both green field and brownfield projects. Although at the planning stage all application areas or possibilities of wireless technology may not be obvious, designing the oil and gas facility with a strategy for wireless instrumentation and also preparing for a wireless infrastructure should be a part of the design specification.


Citation: Smitha Gogineni, “Reliability of Wireless Instrumentation in Oil & Gas Industry.” Journal of Instrumentation Technology, vol. 3, no. 1 (2016): 1-3. doi: 10.12691/jit-3-1-1.

This work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Why Wireless Instrumentation for Industrial Process Control?


Reasons why wireless instrumentation is the right choice for industrial process control.

Analynk Wireless
https://analynk.com
(614) 755-5091

Manufacturer of HazaLynk™ Wireless Products for Hazardous Areas and Sensalynk™ Single & Multi-point Wireless Transmitters, Receivers, Repeaters

Wireless Process Instrumentation and Cloud-based Solutions

Wireless technologies and cloud computing systems are changing industrial communications. Industrial wireless networks and cloud-based tools, simply stated, allow manufacturing plants to do more with fewer people.

This two-part article delves into the recent trends in the use of cloud-based tools and wireless networks to help plant operators improve their application validation, improve their diagnostic selection of instrumentation, and improve device commissioning.

The benefits of wireless and mobile communications is clear. Engineers and other factory personnel can input data wirelessly via a smart phone, or a laptop computer so they can have their specific requirements recorded. Collaboration with other team members is possible, through the cloud, to determine the optimum set up for the project devices to streamline engineering decisions (and to avoid expensive mistakes upfront in the project). Information in the cloud may also be equipped for instant duplication, so projects that have many identical device configurations can be rapidly repeated.

Using a cloud-based and wireless network approach improves success in installing large numbers of new field instruments, which is common for unit expansion. Other benefits of adapting cloud-based services and wireless networks for prices control include:
  • A convenient way to share and collaborate in real-time. Multiple users can visualize the transmitter configuration though a link. This saves staff time and reduces travel time for support people. 
  • If a beginning user has an underdeveloped knowledge of the application, the cloud can provide readily accessible information such as compatibility charts, specification sheets, code requirements, etc … . 
  • Generation of a standard data sheet so engineers don't have to spend as much time on data entry. The data sheet can be stored to support the user's necessary documentation and audit trail. 

The paradigm for instrumentation setup is changing dramatically. Cloud-based tools and wireless communications are optimizing manufacturing operations and delivering capital projects cost effectively, efficiently, and as rapidly as possible.

Under increasing pressure for improved quality, safety, and profits companies are migrating toward cloud-based application, data storage and wireless networking. These new technologies are playing a key role in improving safety, lowering operating costs, providing real-time performance data, and continuously monitor processes.

Business Case for Industrial Wireless

One of the key enablers of factory automation is the availability of wireless radio frequency devices. Some applications of radio frequency devices include process control, oil and gas refineries, pharmaceuticals, food and beverage, autonomous guided vehicles (AGVs) control, slotted microwave guides, pendants to control cranes and machine tools, active and passive radio frequency identifier (RFID) for tracking parts, tools and consumables, wireless barcode readers, remote sensing of critical process parameters, mobile telephony, door openers, emergency communication, and general factory Wi-Fi for internet connectivity. In addition, devices not directly associated with the manufacturing process such as microwave ovens and mobile telephone hot spots must be included when designing a factory wireless system. As useful as wireless communications is, it must be recognized that spectrum is limited and there must be judicious choices about when it should be used, and when wired connections are preferable.

In general terms, wireless (as with any upgrade to a factory or enterprise system) should satisfy a requirement related to quality, reliability, efficiency, safety, regulation, or environment as shown in Table 4. The requirements pertain to the business enterprise which in the case of a manufacturing operation means the plant or factory. A wireless deployment should be designed to satisfy one of the key business concerns listed.

Table 4. Purposes for initiating a wireless systems deployment
  • Functionality - Is wireless required to achieve an aspect of function within the factory operation? For example, does the factory require a mobility to achieve a goal?
  • Reliability - Is reliability of the production line improved? The ability to manufacture products, parts or assemblies which conform to the engineering definition, and can demonstrate conformity.
  • Safety - Are people or equipment made safer? The ability of employees to perform their jobs free from recognized hazards including falls, hazardous energy, confined space, ergonomics, and hazardous materials, and being able to demonstrate compliance with all safety regulations.
  • Efficiency - The ability to meet target costs and continue forever to reduce unit production costs.
  • Quality - The ability to manufacture parts and assemblies which conform to the engineering definition, and be able to demonstrate conformity.
  • Environment - The ability to demonstrate compliance with applicable government regulations at the city, county, state, and federal level.

Reprinted from "Guide to Industrial Wireless Systems Deployments" by the National Institute of Standards and Technology. Get your copy here.

Process Control and Wireless Networks

Industrial plants, factories and process automation systems are increasingly deploying information and communications technologies to facilitate data sharing and analysis in integrated control networks. Despite the harsh process control environment, signal propagation loss and radio frequency (RF) interference, wireless connections provide fast and easy access to a variety of field instruments and reduce network installation costs and ongoing maintenance outlays. This serves as an incentive for the adoption of industrial wireless networks based on industry standards such as ISA100.11a, a wireless networking technology standard developed by the ISA (International Society of Automation) and the WirelessHART, a wireless sensor networking technology based on the Highway Addressable Remote Transducer Protocol (known as HART). Wide-scale adoption proceeds cautiously though, as industrial environments vary widely and process control systems exhibit a multitude of critical wireless networking requirements, such as:
  • Deterministic transmissions in shared wireless bandwidth.
  • Low-cost operation.
  • Long-term durability.
  • High reliability in the harsh radio propagation environment.
Wired connections have proven themselves effective in supporting reliable, point-to-point communications between the controller and the field instruments. A problematic limitation exists with wired connections though - they are unable to accommodate the growing demands and future requirements to support adaptive network topology and rapid reconfiguration encountered in new process control systems.

In lieu of laying down miles of cables to connect hundreds of field instruments, industrial wireless communication networks provide wireless connections with customized network topology, allow for plug-and-play configuration, and offer lower installation and maintenance costs.

Compared with the requirements of standard Internet data services, wireless in the process control environment has stricter quality of service (QoS) requirements. These include more highly reliable transmissions in mobile use cases as well as centralized data analytics, tighter message latency, and lower power consumption.

Hazardous Area Antennas

Gathering information in hazardous areas is critically important for plants to access. Wireless communications is vital for improved efficiencies, real-time monitoring of machinery and equipment, and the safety and well-being of personnel.

Hazardous area antennas from Analynk Wireless are designed and constructed for very rugged industrial applications. Furthermore, all Analynk hazardous area antennas  are UL  listed for Class 1, Groups C & D and have ATEX/IECEx Certification. Finally, a range of frequencies are available from 900MHz, 2.4GHz, Cellular, GPS, Iridium and dual bands.



SensaLynk™ Single & Multi-point Wireless Transmitters, Receivers, and Repeaters

The SensaLynk™ line of industrial wireless products are designed to meet today's increasing demands for greater efficiency, higher reliability and lower cost of ownership. SensaLynk™ wireless technology supports industry standards and protocols and maximizes the flexibility of your process control system while reducing inventory and installation costs.

https://analynk.com
(614) 755-5091

HazaLynk™ Wireless Products for Hazardous Areas

The HazaLynk™ Series incorporates a wide selection of wireless hazardous area devices to suit a variety of industrial applications. The product line includes wireless instruments for hazardous areashazardous area antennas, hazardous area access point enclosures, and hazardous area RF enclosures that simplify the process of installing field instrumentation, while meeting code requirements for hazardous classified and explosive environments.

https://analynk.com
(614) 755-5091


The Move Toward Industrial Wireless Control

wireless instrumentation Demands for safety, reliability, efficiency, and quality put manufacturing plants under tremendous pressure. Unexpected shutdowns and outages have devastating effects on plant performance. Lost production, increased energy costs, unplanned maintenance costs, and augmented safety concerns are outcomes of equipment failure. Tomorrow's technologies must mitigate these process control realities.

Wireless technology is a serious contributor in the effort to improve plant efficiency, lower risk, and increase productivity. Wireless transmitters are available for monitoring virtual all process variables such as pressure, temperature, level, flow, and density. In harsh environments these devices provide critical performance data transmission around the clock.

Wireless instrumentation provides a compelling argument when you consider installation cost savings and convenience.  The cost savings associated with the elimination of wires and cables is estimated to be as high as 70% when compared to the cost using cables for the same application. Furthermore, wireless instruments keep personnel out of hazardous areas, providing additional safety and compliance benefits.

All industries face cost cutting realities as they strive for continuous process improvement.  The need to build a better mousetrap is always present. Before widespread adoption of wireless occurs, concerns about reliability, acclimation, and integration must be overcome. But, as deployment costs are reduced, maintenance costs are reduced, employee safety is improved, and environmental compliance is advanced, wireless instrumentation adoption with continue to accelerate in modern process control installations.