Showing posts with label industrial wireless. Show all posts
Showing posts with label industrial wireless. Show all posts

Industrial Wireless Security

Industrial Wireless Security
Industrial control systems (ICS) cybersecurity is a branch of general cybersecurity in which the systems being protected have physical characteristics which if compromised can lead to down-time, injury or death, and economic loss.

Industrial control systems include supervisory control and data acquisition (SCADA) systems, localized work-cells, enterprise control systems, and cloud-based factory collection systems. Traditional information technology (IT) systems differ from operational technology (OT) systems primarily in their cybersecurity priorities. In general, IT systems defend against data extractions. Encryption used to provide confidentiality is of primary concern. In OT systems, confidentiality is no longer of paramount concern. While eavesdropping can lead to reverse engineering of proprietary factory methods and design, it is usually more important to keep the factory running. Therefore, technologies must assure that both cybersecurity controls and cyber-attack do not limit or prevent the capability of the factory running with high availability. Table 1 lists the priorities of IT and OT systems. It is important for IT professionals to recognize that wireless security practices used in the office may not be available for factory deployments. If they are available, they may not be desirable to maintain system availability. Securing the industrial network can be summarized in the following considerations:
  • Secure the physical environment; 
  • Secure the end-points; 
  • Secure the controller; 
  • Secure network transmissions/data. 
Industrial wireless networks have the same consideration as wired networks with the addition of protecting the electromagnetic spectrum allocated for the industrial wireless network operation.
Table 1 - Typical Priorities of IT and OT Systems
The number of devices connecting to industrial networks is increasing at a rapid rate. It exposes systems to security breaches and cyberattacks. As a result, security is paramount for industrial operations. Some manufacturers think wireless will create new vulnerabilities in the network that may result in potential threats. Just making the wireless network accessible through a password is not adequate. One key concern is how to identity and eliminate rogue access points. Therefore, wireless intrusion detection systems and intrusion prevention systems are in demand.

In addition, isolation of production devices on a separate network from corporate networks, internet traffic, and phone and surveillance systems is necessary. In other words, one can employ an “island” approach to networking that limits the movement of traffic and devices between islands. By properly segmenting a network, it can limit movement between networks to appropriate devices and block the movement of devices that are unnecessary or provide little value.


Reprinted from Guide to Industrial Wireless Systems Deployments produced by The National Institute of Standards and Technology. A free copy of this entire publication is available here.

Reliability of Wireless Instrumentation in Oil & Gas Industry

Wireless Instrumentation in Oil & GasAbstract

Wireless technologies are integrated into almost every part of our daily lives. Wireless technologies for Instrumentation offers significant cost savings such as faster commissioning, efficient maintenance when compared to traditional wired networks. The value of this cost savings are particularly significant in the highly competitive Oil and Gas industry, where aging facilities are common and upgrades are expensive. There are still some uncertainties on Wireless technologies in the industry due to its unknown performance characteristics such as stability and reliability of wireless communications at offshore and onshore facilities. Due to this, the acceptance of wireless instrumentation in the oil and gas industry has been slow even though the first wireless sensors are available since 2007. Reliability of wireless Instrumentation is critical as automation systems rely on accurate information for operators to make informed decisions for control and safe operations.

1. Introduction

As the world’s oil giants are looking for new ways to improve costs in engineering, commissioning, installation and operations, wireless instrumentation represents major cost savings through elimination of local field cable, associated field-run cable trays and ease of maintenance. The production facilities are more often subject to changes which are expensive and wireless instrumentation provides flexibility to a larger degree compared to the traditional wired instruments during such upgrades. For offshore facilities, weight savings is also a preferred advantage introduced by wireless instrumentation. The main contributions to weight savings for wireless instrumentation also comes from the elimination of cabling, cable trays, junction boxes, I/O cabinets and so on. In Brownfield projects, the significance of cost savings and weight reduction by using wireless instrumentation is even higher.

There are challenges to use wireless technologies for control and safety applications. For control applications, the requirement is to have a common timing domain for all components in the system. This means that the clocks of wireless sensors and actuators and the wireless gateway should be synchronized with the clocks of the controllers and control system. For most safety applications, continuous monitoring is necessary and a short response time needs to be guaranteed if a safety critical situation arises. Thus the primary difficulty in designing a wireless safety system is having a guaranteed short latency while not depleting the batteries. In addition, full control of all network message traffic is required, and loss of contact with a device must be identified immediately.

2. ISA 100.11a and WirelessHART

WirelessHART enables wireless transmission of HART messages, and was the first standard to be released which specifically targets industrial applications. Wireless HART was approved as IEC standard 62591 in 2010. The standard WirelessHART Architecture is shown in Figure 1. The Wireless HART devices are devices with WirelessHART built in or an existing installed HART- enabled device with a WirelessHART adapter attached to it and Wireless Access points enable communication between these devices and host applications connected to a high-speed existing plant communications network. ISA100.11a standard compliant wireless devices demonstrated interoperability in the same network and communication performance of the multiple vendor devices are nearly the same. Both WirelessHART and ISA100.11a are based on the IEEE Std. 802.15.4 PHY and MAC, although the MAC has been modified to allow for frequency hopping.

Furthermore, WirelessHART and ISA100.11a operates in the popular 2.4 GHz band, which allows for global availability. TDMA with frequency hopping is used as channel access method, and with a full mesh network topology, Wireless HART offers self-configuring and self- healing multi-hop communication.

ISA100.11a wireless technology offers sufficient performance to provide a secure, stable and reliable network for non-critical monitoring and control applications deploying into actual field sites. ISA100.11a supports both routing and non-routing devices, so network topologies can be either star, star-mesh or full mesh depending on the configuration and capabilities of the devices in the network. An ISA100.11a network is able to carry multiple field bus protocols, such as Foundation Fieldbus, PROFIBUS and HART. There is also integrated support for IPv6 traffic and routing in the network layer.

Both standards are designed to support scalability, low energy consumption, ability to work in legacy environments, security, and ability to function fully in environments where devices must coexist with our wireless devices and networks. The strict and limited approach of WirelessHART ensures that practically all WirelessHART devices will have identical behavior, regardless of design and implementation choices made by the equipment providers. The wide range of available optional and configurable parameters in ISA100.11a allows for great flexibility for adapting network behavior to various application requirements. WirelessHART is a wireless extension of the wired HART Field Communication Protocol Specification. The ISA100.11a application layer is object oriented, and implements tunneling features that allow devices to encapsulate foreign protocols and transport them through the network.

Wireless Network Architecture
Figure 1. Wireless Network Architecture

3. Security

Security is always a concern in any network, wireless networks are considered to present distinctive challenges. Because the wireless transmissions can travel for a considerable distance, it is important that the network be adequately secured against monitoring and intrusion. The WirelessHART standard mandates that networks employ a multilayered approach to network security. Both transmitter and receiver must authenticate with the network control system. Transmissions are encrypted using a 128-bit NIST-certified algorithm and verified for completeness and accuracy upon reception. Keys are managed by the gateway and rotated automatically. This combination of authentication, encryption, verification, and key management makes a wireless network as secure as a wired system.

4. Cost Savings

A wireless network requires none of the infrastructure improvements like cost of a measurement loop in the cable, conduit, and multiplexing hardware required to connect the sensor to the facility’s DCS (Distributed Control System), and the resultant savings are substantial. Perhaps the most attractive attribute of a wireless network is that installation cost is significantly reduced when compared with that of an equivalent wired system. A wireless network requires none of these infrastructure improvements, and the resultant savings is significant.
In addition to delivering significant labor and material cost reductions, deploying wireless networks can be done much faster and with lower project management overhead. Once installed, wireless networks can be easily and inexpensively expanded to include additional measurements points for simply the cost of the transmitter. With an installed wireless network this investment can be further leveraged by providing wireless coverage in different parts of the facility. The wireless networks now a days only requires minimal maintenance as the advanced transmitters utilize Time Synchronized Mesh Protocol (TSMP) to carefully control the timing of each transmission. This enables each transmitter to keep its radio and processor powered down until it is time to send or receive a transmission due to which battery life typically lasts for several years. Wireless Instrumentation are self-organizing and eliminates site surveys.

5. Reliability

The primary concern of reliability with wireless networks is based on the assurance of data transmission from the field device to the WirelessHART gateway. The WirelessHART auto routing meshing capabilities are spontaneously managed and result in quick resumption of service in data transmission links in the event of a hindrance. This auto routing capability minimizes or eliminates data transmission interruption. Since data transmission is digital, the data measured or transmitted to the field device reflects values at the automation system. To ensure reliability, digital wireless protocols such as WirelessHART have inherent error checking functions to ensure signals don’t suffer from drift or spikes, any corrupt data is flagged and retransmission is requested, retransmission mechanisms to resend data if it becomes corrupt, reconstruction of partially scrambled data packets.
Electronic Wave Interference is the greatest barrier for adoption of industrial wireless technology for automation in oil and gas industries. Process automation production facilities are constructed using a large amount of metal equipment such as tanks, boilers, pipes, and mounting apparatus. As a result, the facility itself is the main obstacle for wireless communication technology because metal materials readily reflect radio waves. Technologies such as Frequency-Hopping Spread-Spectrum (FHSS), Direct-Sequence Spread-Spectrum (DSSS) Technology or Orthogonal Frequency Division Multiplexing should be considered so that data signals travel through a radio frequency.

Modern wireless networks offer a reliable upgrade path that even provides some surprising benefits when compared to traditional copper networks. With wireless technology, inherent mechanisms make use of redundant paths to route data. Wireless repeaters can be added to increase the reliability of a specific wireless network, and reliability can be further enhanced by the use of redundant gateways. Including WirelessHART as part of the core design of the field device network infrastructure creates inherent design flexibility, which can be used to increase reliability and reduce required maintenance. This allows network design to include the use of wired fieldbus and wireless networks depending on the specific application. Using wireless field devices and networks as an additional technology will enhance the overall robustness of the field device network architecture. It will also save time in terms of inspections, while eliminating potential for design error and reducing complexity. Fewer wires mean reduced design intervention in terms of routing and terminations, and faster repairs in the event of any incidents.

Design for wireless instrumentation should start from the planning phase and before commissioning of the wireless network by performing the site engineering to ensure a good network design, considering communication distances, extent of obstructions, multipath environments. Conduct the network engineering such as layout planning, data publishing period, number of retries. Validate the network planning by measuring RSSIs and PERs at the pre-commissioning stage after deploying the devices.

To ensure Wireless Instrumentation is stable and reliable, use a license-free and application-free radio spectrum throughout the world so that the wireless radios behave the same in different countries or regions; design field devices for low power consumption for small battery sizes and long battery life; Implement data encryption schemes, device authorization in networks and, certification of devices to address security concerns; include communication re-try functions and provide flexibility for network configurations for stability and reliability of communications, implement channel-hoping scheme and channel black/white listing capabilities for co- existence with or interference from other wireless radio applications sharing the 2.4GHz spectrum. To mitigate the effects of interference, wireless protocols may employ various coexistence mechanisms. In WirelessHART and ISA100.11a, clear channel assessment (CCA) and channel blacklisting are the weapons of choice to combat the degrading influence from other wireless networks.

6. Conclusion

Oil and Gas industry may still retain wired instrumentation for implementing critical control and safety instrumented loops, and for processes requiring high speed communications. There are still concerns that high speed applications may not be suitable for wireless due to potential lags in communications, or asynchronous communications between wireless devices. The recommendations by experts are to use wireless where it is most appropriate to supplement and enhance the overall integrity of the I/O infrastructure such as wireless instruments are changing the scope of what is possible in process analytical measurement. Implementing wireless instrumentation in instances like offshore drilling or well head monitoring application will certainly save costs and provides safety in the risky and extreme offshore conditions.

As experience with wireless technology grows, this attitude is shifting, with wireless becoming the default user selection for well-proven applications. Their low cost and ease of implementation make it practical to measure points that are prohibitively expensive to wire. The improvements in process awareness and redundant measurement allow oil and gas operators to tighten process control, increase performance and extend the time between maintenance shutdowns. In situations where speed-of-deployment and time-to-revenue are critical, wireless is by far the best alternative. New advanced wireless systems provide comprehensive solutions for implementing a modern self-organizing network.

New development projects should plan with a wireless strategy in mind. Even though development projects traditionally rely on well proven technology, time has definitely come to offer wireless technology the attention it deserves in the planning process considering the cost benefits it offers for both green field and brownfield projects. Although at the planning stage all application areas or possibilities of wireless technology may not be obvious, designing the oil and gas facility with a strategy for wireless instrumentation and also preparing for a wireless infrastructure should be a part of the design specification.


Citation: Smitha Gogineni, “Reliability of Wireless Instrumentation in Oil & Gas Industry.” Journal of Instrumentation Technology, vol. 3, no. 1 (2016): 1-3. doi: 10.12691/jit-3-1-1.

This work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Why Wireless Instrumentation for Industrial Process Control?


Reasons why wireless instrumentation is the right choice for industrial process control.

Analynk Wireless
https://analynk.com
(614) 755-5091

Manufacturer of HazaLynk™ Wireless Products for Hazardous Areas and Sensalynk™ Single & Multi-point Wireless Transmitters, Receivers, Repeaters

Wireless Process Instrumentation and Cloud-based Solutions

Wireless technologies and cloud computing systems are changing industrial communications. Industrial wireless networks and cloud-based tools, simply stated, allow manufacturing plants to do more with fewer people.

This two-part article delves into the recent trends in the use of cloud-based tools and wireless networks to help plant operators improve their application validation, improve their diagnostic selection of instrumentation, and improve device commissioning.

The benefits of wireless and mobile communications is clear. Engineers and other factory personnel can input data wirelessly via a smart phone, or a laptop computer so they can have their specific requirements recorded. Collaboration with other team members is possible, through the cloud, to determine the optimum set up for the project devices to streamline engineering decisions (and to avoid expensive mistakes upfront in the project). Information in the cloud may also be equipped for instant duplication, so projects that have many identical device configurations can be rapidly repeated.

Using a cloud-based and wireless network approach improves success in installing large numbers of new field instruments, which is common for unit expansion. Other benefits of adapting cloud-based services and wireless networks for prices control include:
  • A convenient way to share and collaborate in real-time. Multiple users can visualize the transmitter configuration though a link. This saves staff time and reduces travel time for support people. 
  • If a beginning user has an underdeveloped knowledge of the application, the cloud can provide readily accessible information such as compatibility charts, specification sheets, code requirements, etc … . 
  • Generation of a standard data sheet so engineers don't have to spend as much time on data entry. The data sheet can be stored to support the user's necessary documentation and audit trail. 

The paradigm for instrumentation setup is changing dramatically. Cloud-based tools and wireless communications are optimizing manufacturing operations and delivering capital projects cost effectively, efficiently, and as rapidly as possible.

Under increasing pressure for improved quality, safety, and profits companies are migrating toward cloud-based application, data storage and wireless networking. These new technologies are playing a key role in improving safety, lowering operating costs, providing real-time performance data, and continuously monitor processes.

Business Case for Industrial Wireless

One of the key enablers of factory automation is the availability of wireless radio frequency devices. Some applications of radio frequency devices include process control, oil and gas refineries, pharmaceuticals, food and beverage, autonomous guided vehicles (AGVs) control, slotted microwave guides, pendants to control cranes and machine tools, active and passive radio frequency identifier (RFID) for tracking parts, tools and consumables, wireless barcode readers, remote sensing of critical process parameters, mobile telephony, door openers, emergency communication, and general factory Wi-Fi for internet connectivity. In addition, devices not directly associated with the manufacturing process such as microwave ovens and mobile telephone hot spots must be included when designing a factory wireless system. As useful as wireless communications is, it must be recognized that spectrum is limited and there must be judicious choices about when it should be used, and when wired connections are preferable.

In general terms, wireless (as with any upgrade to a factory or enterprise system) should satisfy a requirement related to quality, reliability, efficiency, safety, regulation, or environment as shown in Table 4. The requirements pertain to the business enterprise which in the case of a manufacturing operation means the plant or factory. A wireless deployment should be designed to satisfy one of the key business concerns listed.

Table 4. Purposes for initiating a wireless systems deployment
  • Functionality - Is wireless required to achieve an aspect of function within the factory operation? For example, does the factory require a mobility to achieve a goal?
  • Reliability - Is reliability of the production line improved? The ability to manufacture products, parts or assemblies which conform to the engineering definition, and can demonstrate conformity.
  • Safety - Are people or equipment made safer? The ability of employees to perform their jobs free from recognized hazards including falls, hazardous energy, confined space, ergonomics, and hazardous materials, and being able to demonstrate compliance with all safety regulations.
  • Efficiency - The ability to meet target costs and continue forever to reduce unit production costs.
  • Quality - The ability to manufacture parts and assemblies which conform to the engineering definition, and be able to demonstrate conformity.
  • Environment - The ability to demonstrate compliance with applicable government regulations at the city, county, state, and federal level.

Reprinted from "Guide to Industrial Wireless Systems Deployments" by the National Institute of Standards and Technology. Get your copy here.

Process Control and Wireless Networks

Industrial plants, factories and process automation systems are increasingly deploying information and communications technologies to facilitate data sharing and analysis in integrated control networks. Despite the harsh process control environment, signal propagation loss and radio frequency (RF) interference, wireless connections provide fast and easy access to a variety of field instruments and reduce network installation costs and ongoing maintenance outlays. This serves as an incentive for the adoption of industrial wireless networks based on industry standards such as ISA100.11a, a wireless networking technology standard developed by the ISA (International Society of Automation) and the WirelessHART, a wireless sensor networking technology based on the Highway Addressable Remote Transducer Protocol (known as HART). Wide-scale adoption proceeds cautiously though, as industrial environments vary widely and process control systems exhibit a multitude of critical wireless networking requirements, such as:
  • Deterministic transmissions in shared wireless bandwidth.
  • Low-cost operation.
  • Long-term durability.
  • High reliability in the harsh radio propagation environment.
Wired connections have proven themselves effective in supporting reliable, point-to-point communications between the controller and the field instruments. A problematic limitation exists with wired connections though - they are unable to accommodate the growing demands and future requirements to support adaptive network topology and rapid reconfiguration encountered in new process control systems.

In lieu of laying down miles of cables to connect hundreds of field instruments, industrial wireless communication networks provide wireless connections with customized network topology, allow for plug-and-play configuration, and offer lower installation and maintenance costs.

Compared with the requirements of standard Internet data services, wireless in the process control environment has stricter quality of service (QoS) requirements. These include more highly reliable transmissions in mobile use cases as well as centralized data analytics, tighter message latency, and lower power consumption.

Hazardous Area Antennas

Gathering information in hazardous areas is critically important for plants to access. Wireless communications is vital for improved efficiencies, real-time monitoring of machinery and equipment, and the safety and well-being of personnel.

Hazardous area antennas from Analynk Wireless are designed and constructed for very rugged industrial applications. Furthermore, all Analynk hazardous area antennas  are UL  listed for Class 1, Groups C & D and have ATEX/IECEx Certification. Finally, a range of frequencies are available from 900MHz, 2.4GHz, Cellular, GPS, Iridium and dual bands.



SensaLynk™ Single & Multi-point Wireless Transmitters, Receivers, and Repeaters

The SensaLynk™ line of industrial wireless products are designed to meet today's increasing demands for greater efficiency, higher reliability and lower cost of ownership. SensaLynk™ wireless technology supports industry standards and protocols and maximizes the flexibility of your process control system while reducing inventory and installation costs.

https://analynk.com
(614) 755-5091

HazaLynk™ Wireless Products for Hazardous Areas

The HazaLynk™ Series incorporates a wide selection of wireless hazardous area devices to suit a variety of industrial applications. The product line includes wireless instruments for hazardous areashazardous area antennas, hazardous area access point enclosures, and hazardous area RF enclosures that simplify the process of installing field instrumentation, while meeting code requirements for hazardous classified and explosive environments.

https://analynk.com
(614) 755-5091


The Move Toward Industrial Wireless Control

wireless instrumentation Demands for safety, reliability, efficiency, and quality put manufacturing plants under tremendous pressure. Unexpected shutdowns and outages have devastating effects on plant performance. Lost production, increased energy costs, unplanned maintenance costs, and augmented safety concerns are outcomes of equipment failure. Tomorrow's technologies must mitigate these process control realities.

Wireless technology is a serious contributor in the effort to improve plant efficiency, lower risk, and increase productivity. Wireless transmitters are available for monitoring virtual all process variables such as pressure, temperature, level, flow, and density. In harsh environments these devices provide critical performance data transmission around the clock.

Wireless instrumentation provides a compelling argument when you consider installation cost savings and convenience.  The cost savings associated with the elimination of wires and cables is estimated to be as high as 70% when compared to the cost using cables for the same application. Furthermore, wireless instruments keep personnel out of hazardous areas, providing additional safety and compliance benefits.

All industries face cost cutting realities as they strive for continuous process improvement.  The need to build a better mousetrap is always present. Before widespread adoption of wireless occurs, concerns about reliability, acclimation, and integration must be overcome. But, as deployment costs are reduced, maintenance costs are reduced, employee safety is improved, and environmental compliance is advanced, wireless instrumentation adoption with continue to accelerate in modern process control installations.

Visit Analynk at Atmosphere 2018

hazardous area wireless accesspoint enclosure with antennas
Analynk specializes in hazardous area enclosures for
wireless access points.
Analynk is an active sponsoring partner, participant and exhibitor at the Aruba Atmosphere 2018 conference, held in Las Vegas from March 25 through March 30. The event is organized and hosted by Aruba, a Hewlett Packard Enterprise company. This event provides opportunities for technical training, as well as other resources to keep you and your organization up to date on technology related to wireless networks.

Visit Analynk Wireless at their exhibit space, booth D2F, on Monday, Tuesday or Wednesday during the event. Share your wireless connectivity challenges and leverage your own knowledge and experience with Analynk's hazardous area expertise.

Prefabricated Wireless Communications Solution

Wireless transmission of process measurement and control signals has not been new technology for quite some time. In many cases, wireless connection is the installation method of choice over cabled. The benefits in speed of implementation and cost are substantial. That said, as the technology continues to permeate industrial installations of every size, there still remain facilities where it has not made any inroads yet. 

When technology is new to the industrial market, especially if it challenges the current way things are done, early adopters with larger scale, higher dollar operations are needed to put the technology into practical use and generate manufacturing volume for the technology producers. If deployment of the technology proves beneficial, the market grows on the consumer and producer sides. With greater efficiency and scale, coupled with growth in the knowledge base throughout the market with increased penetration, costs tend to decrease, while the range of feasible applications and projects grows.

Wireless communication for industrial applications is well beyond the point of early technology adoption. Protocols are in place, products for the transmitting and receiving of wireless process signals are mature. As a stakeholder at any level of a processing operation, you should confidently consider wireless connections between measurement and control or recording devices as part of any new installation or upgrading of existing facilities.

Analynk's wireless demo kit includes a model A750 receiver and A753 transmitter both housed in NEMA 4 enclosures. The kit operates at 900 MHz with full 1W power. Locate the transmitter and receiver at points where you wish to establish a wireless connection. You can provide your own input signal, or use the provided simulator to show that a wireless connection can be established and function in a manner that will give you confidence to move forward with implementation. The kit is useful for testing out possible new locations for distance and signal strength. You will use it as wireless communications expand through your facility. Test the location first, then order the needed wireless equipment. It's a solid and low risk solution.

An additional use of the prefabricated transmitter and receiver stations is as a temporary portable means of establishing a connection between measurement and control points. The units can even be solar or battery powered, if no power source is available.

Analynk is a manufacturer of both wireless and wired devices for process measurement and control. The company's offering includes a wide array of standard products, as well as integration and customization to meet specific project requirements. Contact the specialists at Analynk to discuss your industrial wireless application requirements.

Wireless Process Connections - DIY May Not Be Your Best Option

industrial wireless gear enclosure options
Analynk can design and fabricate complete systems for
establishing wireless process connections.
Implementing in-house projects takes time, something you may not have enough of on a good day. Establishing wireless connections between remote sensors and control or monitoring equipment can be accomplished with a minimum investment of scarce in-house human resources using Analynk's design and build services. With an extensive range of standard products, accessories and options, Analynk will assemble ready-to-run panels for the transmitting and receiving ends of your wireless link. This saves a substantial amount in resources that would otherwise be devoted to design, layout, assembly and operational testing of each panel needed. Smart outsourcing.

The Analynk application team can design and fabricate a complete package solution for your process measurement or wireless connectivity requirement. Share your ideas and challenges with the wireless and process measurement experts, leveraging your own knowledge and experience for a successful project outcome.

Analynk Participation in Aruba Atmosphere 2018

logo for Atmosphere 2018 conference by Aruba in Las Vegas
Analynk will be an active sponsoring partner participant at the Atmosphere 2018 conference, held in Las Vegas from March 25 through March 30. The event is organized and hosted by Aruba, a Hewlett Packard Enterprise company. This event provides opportunities for technical training, as well as other resources to keep you and your organization up to date on technology related to wireless networks.

An excerpt from the conference website provides a good synopsis.
Technology is changing so rapidly that it’s near impossible to stay ahead. Don’t rely on Google and YouTube – you should join the best in the industry at Atmosphere 2018. It’s an opportunity to join over 3,000 of your peers to learn, collaborate and influence the direction of Aruba products that deliver enterprise-class wireless, wired, security, location and branch solutions. Be a part of today’s leading innovation machine!
At Atmosphere, you’ll experience the technical vision of how you can enable intelligent edge capabilities in your business with the Aruba Mobile First Architecture. Keynotes and hands-on sessions will teach you how to:
  • Learn how to turn IT resources into assets for your business
  • Close security gaps while supporting workplace flexibility
  • Provide the right collaboration tools for organizational creativity
  • Help your organization gain an innovation edge
  • Embrace the flexibility and scale of cloud and on-premises solutions
Make plans to attend and take advantage of the concentration of available knowledge, all in one place. 

Use Signal Repeaters to Overcome Industrial Wireless Transmission Barriers

industrial wireless communications using transmitter, repeater and receiver
A repeater can be used to overcome barriers to signal
transmission, such as distance and structures.
Many process measurement and control wireless connections are accomplished using networks, with routers and access points. Other connections are established across longer distances, conceivably outdoors. In many of those cases, there are barriers or obstructions that will attenuate the wireless signal sufficiently to prevent reliable data transfer. Hills, wooded areas, walls, tanks and other structures and natural features can present real challenges to wireless signal transmission. Another transmission challenge is the distance between transmission and receiving stations.

One, though not the only, solution to overcoming the challenge that can arise due to extended distance or substantial obstacles between the transmitter and receiver is the placement of a repeater. Analynk provides a repeater that can be strategically located between transmitter and receiver to extend the overall transmission distance, or route the signal around obstacles that may otherwise degrade the transmission. The data sheet included below describes how easy it is to apply and provides all the technical details.

Wireless connectivity is an incredibly flexible option for delivery of process data from measurement point to control point. Contact Analynk with your wireless communication challenges and get solid practical solutions.



Fresnel Zones and Industrial Wireless Connections

oilfield production site and equipment
Industrial wireless connections established outdoors across
long distances have to consider transmission path geometry.
A Fresnel zone, of which there an infinite theoretical number, is an ellipsoid shaped area extending between radio signal transmission and receiving antennas. Having a basic understanding of their impact on successful implementation of a lengthy wireless process signal connection will prove useful.

Wireless transmission of process signals in industrial settings becomes more prevalent every year, and should continue to do so for quite some time. Many installations are part of networks operating similarly to the wifi you may have in your home, with multiple points communicating via a network control scheme of some sort. The facility is flooded with signal coverage through multiple access points, so there may not be much need to consider signal propagation. This is an oversimplification, but as an operator or implementer, making the actual signal connection is probably not going to be an issue in most cases.

What about the other cases?
antennas and associated Fresnel zones and obstruction avoidance
Antennas with three Fresnel zones depicted and
obstruction that is outside the primary Fresnel zone
Courtesy Wikipedia

An extended transmission distance across an outdoor area requires more understanding of signal propagation and factors that impede successful delivery of process data from transmitter to receiver. One concept that comes into play is the Fresnel zone.

Let's avoid an overly technical approach to Fresnel zones. The purpose of this post is to provide those with limited radio expertise familiarity with the subject of Fresnel zones at a level enabling visualization of the concept, and also to recognize its potential impact on achieving a successful wireless process connection.

We often consider the transmission path between two points to be the familiar "line of sight", an unobstructed straight line between transmitter and receiver. In practice, radio frequency transmission is more accurately characterized by Fresnel zones. Being aware of the shape of the first, or primary, Fresnel zone for your application is an important element in identifying potential obstructions. A general practice is to keep the primary Fresnel zone at least 60% clear of signal obstructions, in order to maintain high wireless link performance.

There are numerous sources of Fresnel zone calculators online, but a strong recommendation to consult with your selected wireless equipment provider is in order here. Combine their expertise at applying their products with your application knowledge to leverage an effective solution.

Expand Industrial Wireless I/O Capacity With A16000

industrial wireless communications equipment
The A16000 increases the I/O capacity of a dedicated
transmitter and receiver.
Modern industrial radio frequency (RF) communications gear enables the establishment of process signal connections across very small or very large distances. The advantages of implementing cost effective connections within a very short time frame makes wireless connections a popular option in industrial settings. A misconception arises, from time to time, that it is necessary to have a dedicated transmitter and receiver for each process signal. Analynk has a solution that provides for delivery of up to sixteen process signals over a single transmission path.

Analynk provides hardware that easily allows the transmission and reception of up to 16 I/O points using single transmission and reception point devices. The A16000 Expansion Module can be configured with up to four internal cards that accommodate various types of input and output signals. The configuration process is similar to setting up the I/O on a PLC. Connect the process signals to the A16000, and the A16000 to one of Analynk's transmitter or receiver devices. Setup is straight forward and allows the installation to be operable in a very short time frame. The A16000 can also be used to expand existing installations as process I/O points increase.

Share your wireless communications and signal transmission challenges with the experts at Analynk and get recommendations on how to best implement workable solutions.



Hazardous Area Wireless Access Point Enclosure for Aruba AP 274

wireless access point enclosure for hazardous area
This version of the AP617 Hazardous Area Wireless Access
Point Enclosure accommodates six explosion proof antennas.
The Aruba AP-274 wireless access point carries a description of it's operating environment range that says "Purpose-built to survive in the harshest outdoor environments, 270 series APs withstand exposure to extreme high and low temperatures, persistent moisture and precipitation, and are fully sealed to keep out airborne contaminants. All electrical interfaces include industrial strength surge protection." While the access point can withstand outdoor environments, maybe even some industrial environments, there is a large class of industrial settings where it is just as important to protect the environment from the device as it is to protect the device from the environment. Hazardous atmospheres require isolation and special housing of electrical gear that have potential to be source of ignition.

Analynk manufactures enclosures for industrial wireless access points, facilitating their installation in hazardous locations. Each access point enclosure is specifically targeted and designed to provide easy installation of specific wireless access points from a range of manufacturers. Every model is provided with UL listed explosion proof antennas, a mounting bracket designed for the target access point, and RF cables to make the antenna connections. Enclosures have penetrations specifically located to accommodate the target access point.The current offering accommodates a range of units from Symbol, Cisco, Meru, Aruba, HP, and Motorola, with more models added regularly to accommodate additional wireless access points.

The website has a newly added data sheet for the AP617, specifically designed for the Aruba AP-274 dual band access point. Analynk Wireless specializes in industrial wireless communications. Your wireless communication challenges are welcome at Analynk, so make contact and share your application requirements. Combining your own knowledge and experience with Analynk's industrial wireless application expertise will produce an effective solution.

The new datasheet for the AP617 is provided below. You can see all the models and their companion access points on the Analynk site.


Load Cells in Process Measurement

industrial fluid processing tanks
Strain gauges and load cells are found throughout
industrial processing applications.
In industrial application of process measurement and control, principles of the physical sciences are combined with technology and engineering to create devices essential to modern high speed, high accuracy system operation. Years of research, development, and the forward march of humanity’s quest for scientific knowledge and understanding yield packaged devices for process measurement that are easily applied by system designers and operators.

Load cells are the key components applied to weighing component or processed materials in modern processing. They are utilized throughout many industries related to process management, or just simple weighing operations. In application, a load cell can be adapted for measurement of items from the very small to the very large.

In essence, a load cell is a measurement tool which functions as a transducer, predictably converting force into a unit of measurable electrical output. While many types of load cells are available, the most popular cell in multiple industries is a strain gauge based cell. These strain gauge cells typically function with an accuracy range between 0.03% and 0.25%. Pneumatically based load cells are ideal for situations requiring intrinsic safety and optimal hygiene and, for locations without a power grid, there are even hydraulic load cells, which function without need for a power supply. These different types of load cells follow the same principle of operation: a force acts upon the cell (typically the weight of material or an object) which is then returned as a change in a reference value. Processing the value yields an indication of weight in engineering units. For strain gauge cells, the principle of deformation applies, where extremely small amounts of deformation, directly related to the stress or strain being applied to the cell, are output as an electrical signal with value proportional to the load applied to the cell. The operating principle allows for development of devices delivering accurate, precise measurements of a wide range of industrial products. Advantages of load cells include their longevity, accuracy, and adaptability to many applications, all of which contribute to their usefulness in so many industries and applications.

Analynk manufactures process measurement and control equipment that utilizes strain gauges in their operation, as well as signal alarms and transmitters that will convert strain gauge output signals into common process control signals. Equipment for further establishing wireless connections among measurement and control devices is a specialty of Analynk Wireless. Share your process measurement and connectivity challenges with the industrial wireless experts at Analynk, leveraging your own process knowledge and experience with their specialized application expertise to develop effective solutions.

Wireless Access Point Enclosures for Hazardous Areas

hazardous area enclosure for industrial wireless access point
One of  many variants of access point enclosures for
hazardous areas
Wireless access point enclosures for use in areas classified as hazardous are designed and certified for use in those locations within chemical plants, refineries, oil and gas platforms, mining facilities, grain processing, plastics processing and more. These specialized enclosures also provide an additional level of security for wireless access point by preventing tampering, vandalism, and theft.

It can be advantageous for the wireless network gear in the processing or manufacturing section of a facility to conform to certain information technology standards established for the larger scope of the organization. There can be real benefits to standardizing on particular brands or types of hardware. The tasks involved with back end management of network infrastructure are less complex when all the equipment is of the same vendor and product family. Provisioning, which includes initial setup, long term management, and unit loss management, is simplified when all the units are the same. Process engineers and operators pursue the same goal in standardizing on particular transmitters, valves, or other components that have multiple installations throughout a facility. Difficulty can arise when the IT team's chosen wireless access point needs to be installed in an area classified as hazardous due to the potential for ignition of flammable or explosive gases and vapors.

Analynk's industrial wireless access point enclosures are designed for Class 1, Division 1, Hazardous Locations, Groups C & D, ATEX Zone 1. Standard models are available to accommodate Symbol, Cisco, Meru, Aruba, HP, and Motorola access points. Each unit arrives with an enclosure fitted with mounting holes for the required antenna set and cabling, custom interior mounting plate for the designated access point, explosion proof antenna set and cables to connect the antenna set to the access point. Analynk's hazardous area enclosures for wireless access points deliver a ready-made solution for installing wireless access points in hazardous locations.