Protecting Wireless Infrastructure in Potentially Explosive Environments

Wireless access point enclosure"Built to Blast: Industrial Internet of Things Infrastructure for Hazardous Environments" 

Many chemical, defense, flight line, food processing, fueling, mining, petrochemical, and pharmaceutical applications require high-performance Wi-Fi access in potentially explosive environments. Whether for device telemetry, network access, site-to-site connectivity, or unified communications, these applications require the highest available Wi-Fi performance in the harshest of environments.

Wi-Fi access points can be designed to operate directly in explosive environments without an additional protective enclosure, or they can be designed for use in non-explosive environments and operated inside of an enclosure rated for the application. The former approach is cost-effective when the underlying technology driving the equipment is established, stable, and unlikely to need an upgrade for years; IoT speed, position, pressure, and temperature sensors fall into that category.

The latter approach – using an external enclosure – is the most practical if the underlying wireless technology is changing rapidly. That’s because the cost of purchasing and installing an explosion-proof enclosure can represent from 4 to 20 times the cost of the access point the enclosure is designed to protect. It’s substantially less expensive to swap out the access point, leaving the protective enclosure untouched, than to install a completely new enclosure with every technology upgrade.

In less than ten years the Wi-Fi industry has moved from 802.11n to 802.11ac Wave 1 to 802.11ac Wave 2. Just as no customer would buy a new truck based on a 10 year old design, neither would they consider deploying 802.11n access points based on technology from 2007. At a minimum they would use 802.11ac Wave 1, especially in industrial environments, because of 802.11ac’s outstanding multipath performance in the presence of metal.

Using typical amortization rates a customer that wants to stay abreast of the latest Wi-Fi technology would update equipment roughly once every four years. If we assume that an access point designed for uncontrolled outdoor environments with wide temperature range operation has a List price of $1,500, the associated Class 1 Division 2 enclosure Lists for $3,500, and the installation of just the enclosure (excluding access point set-up and commissioning) costs $2,500, then customers will save $4,500 with every turn of access point technology if the enclosure is retained.

For more information about hazardous area wireless access point enclosures, contact Analynk by calling (614) 755-5091 or visit their website at

Regulations and Standards for Equipment Operating in Explosive Atmospheres

Reprinted from "Built to Blast: Industrial Internet of Things Infrastructure for Hazardous Environmentsby Aruba Networks.  Full text white paper can be downloaded here.

A potentially explosive atmosphere exists when air gas, vapor, mist, or dust – alone or in combination – are present under circumstances in which it or they can ignite under specified operating conditions. Places with potentially explosive atmospheres are called “hazardous” or “classified” areas or locations.

Multiple local and international regulations are in place to mitigate the risk posted by operating networks and IoT devices in potentially explosive atmospheres. Increasingly these regulations are becoming harmonized under a framework developed by the International Electrotechnical Commission (IEC) and European and US standards.

ATEX Directives

ATEX, derived from the French phrase “Atmosphères Explosibles,” is a European regulatory framework for the manufacture, installation, and use of equipment in explosive atmospheres. It consists of two European Union (EU) directives:

  • 1999/92/EC which defines the minimum safety requirements for workers in hazardous areas; and
  • 2014/34/EU which covers equipment and protective systems intended for use in potentially explosive atmospheres.

These two directives define the essential health and safety requirements, as well as the conformity assessment procedures, that need to be applied before products can be used in the EU market.

IEC Ex System (IECEx)

IECEx is a voluntary certification program that validates compliance with IEC standards related to safety in explosive atmospheres. Details about IECEx, its coverage areas, and conformity mark system can be found at

European Committee for Electrotechnical Standardization (CENELEC)

CENELEC was formed to facilitate a consensus-building process between European and international electrical standards activities. In 1996 CENELEC and the IEC formalized a framework of cooperation through an agreement on common standards planning and parallel voting that is known as the Dresden Agreement. As a result of this initiative both CENELEC and IEC have similar standards for explosive environments.

National Electrical Code (NEC)

NEC defines the standards for the safe installation of electrical wiring and equipment in the United States, and its standards are coordinated with those of the National Fire Protection Association (NFPA). NFPA 70 Articles 500 thru 510 address safe practices for the location and operation of electrical equipment in hazardous locations installations.
Additional national standards relating to hazardous environments may be in effect in different countries, however, there has been a concerted effort in recent years to harmonize local standards with the standards referenced above.

About Analynk

Analynk, LLC manufacturers hazardous area wireless access points. More information on their products can be found here.

IIoT (Industrial Internet of Things) Wireless Networking Considerations in Hazardous Environments

Industrial Internet of Things Wireless Networking
Industrial Internet of Things Infrastructure for
Hazardous Environments
Industry groups and standards bodies have collaborated to address these issues by classifying explosive materials and defining standards under which networking equipment and Internet of Things (IoT) devices can be safely operated in their presence. The work has been conducted by different organizations, in different regions, and it can be challenging to understand which standards are applicable under different scenarios.

This white paper examines the different categories of explosive risks, which standards to apply under different scenarios, how network infrastructure can be deployed in explosive environments, and how sensor systems can be integrated with this infrastructure. The goal is to enable end customers and resellers to select the network infrastructure, enclosures, and associated systems that are best suited to each scenario.