Showing posts with label IIoT. Show all posts
Showing posts with label IIoT. Show all posts

Access Points in Industrial Settings

Access Points in Industrial Settings: Bridging Performance and Compatibility

An access point (AP) is a device that allows wireless devices to connect to a wired network using Wi-Fi. It interfaces between wireless clients and the wired LAN (Local Area Network). Access points are essentially the wireless equivalent of an Ethernet hub or switch, granting multiple devices access to the network.

In industry and manufacturing facilities, an access point (AP) provides wireless connectivity to a wired network, enabling seamless communication across large areas. These APs handle a high density of devices, withstand harsh environmental conditions, and offer enhanced security features. They support mobile workers, integrate wireless industrial equipment, facilitate real-time data collection and monitoring, and ensure safety through connected sensors and alarms. The strategic placement of APs provides consistent network coverage, allowing for efficient and uninterrupted operations in the facility.

The rapid evolution of technology in industrial settings has necessitated a corresponding advancement in network infrastructure. Wireless access points are at the heart of this transformation, which have become pivotal in ensuring high-performance connectivity and backward compatibility with legacy systems. Industrial facilities often house diverse equipment, ranging from older machines with limited connectivity options to state-of-the-art devices with advanced wireless capabilities. This mix presents a unique challenge: providing a network that caters to the needs of both old and new devices without compromising on speed, reliability, or security.

Dual-band access points have emerged as the solution to this problem. By operating on both the 2.4 GHz and 5 GHz frequency bands, they offer the flexibility of supporting older devices that may only recognize the 2.4 GHz band while still providing the faster and less congested 5 GHz band for newer, more capable devices. This dual-band capability ensures that industrial settings don't have to choose between performance and compatibility; they can achieve both. Moreover, with the increasing reliance on real-time data analytics, cloud-based applications, and remote monitoring in modern industry, the role of access points in delivering consistent and high-speed connectivity has never been more crucial. Their ability to bridge the gap between the old and the new ensures that industries can transition into the future without leaving the past behind.

Analynk Wireless specializes in producing enclosures for wireless access points suited for hazardous environments. Their enclosures come with certified components, inclusive of antennas, mountings, entry points, cables, and energy sources. Their diverse product range is compatible with numerous wireless access point brands, such as Aruba/HP, Cisco, Meraki, Meru, Motorola, and Symbol.

Analynk Wireless
(614) 755-5091
https://analynk.com

IIoT Developments and Security Concerns

IIoT Developments and Security Concerns

Upward of 27 billion devices connect as part of the massive confluence of technologies, networks, protocols, standards, and devices known as the Internet of Things (IoT). IoT is a network of computers and devices that capture and exchange vast volumes of data, which is then sent to a cloud-based service, aggregated with other data, and then exchanged with end-users to provide valuable insights. IoT is growing automation in homes, classrooms, shops, and several other industries and industries. 

The Industrial Internet of Things (IIoT) leverages many of the same technologies like IoT and applies them to the industrial world's diverse needs. IIoT is a category of technologies that capture and distribute data inside historically isolated industrial devices, contained in Supervisory Control and Data Acquisition (SCADA) systems and other Industrial Control Systems (ICS). They track and control essential industrial infrastructure, including factories, power plants, water systems, ports, other industrial installations, and some U.S.

Sensitive industrial infrastructure owners and operators are rapidly implementing IIoT technologies to maximize the development and distribution of goods and services, increase performance, improve safety and minimize costs. IIoT sensors and devices provide real-time monitoring and control to operators.  They also collect data on system output, further improving plant performance or production performance. For example, smart tools used on a production line could allow a company to monitor and evaluate its production process. Real-time production data could provide insight into plant conditions, discover additional plant capability, and predictive analytics can help detect corrosion within the refinery pipe.

These threats to modules, firmware and software, wireless networking, and most devices must include mitigation at the computer and system engineering level. The U.S. National Institute of Standards and Technology (NIST) and the European Union Agency for Cyber Security (ENISA) seek to guide the government and industry with some of their voluntary attempts to describe IIoT cybersecurity. Industry is collaborating with original equipment manufacturers (OEMs) and other manufacturers to establish reasonable safety capabilities in IIoT products to avoid burdensome regulations that are likely to quickly get out of date as the IIoT industry is vast and changing much faster compared to government legislation. 

Key Concerns

  • Critical infrastructure owners and operators are rapidly adopting the IIoT to boost performance and maximize productivity, but this technology also brings increased cyber and other vulnerabilities. 
  • The increased adoption of the IIoT, historically unsafe and isolated legacy systems come with new connected devices against a background of diverse yet growing safety standards for components, creates further possibilities for system access and eventual critical infrastructure access to the computer network by several malicious cyber players. 
  • The rise in publicly and commercially accessible cyber resources makes it easier for more players to access vulnerable IIoT components. These devices are contained in critical infrastructure, allowing them to seek a range of effects that may not be detected, and present financial and possibly physical consequences.

IIoT and Wireless Connectivity

IIoT and Wireless Connectivity

The Industrial Internet of Things (IIoT) refers to sensors, controllers, actuators, tools, and other devices interconnected with industrial computer applications, including manufacturing and energy management. This connectivity facilitates collecting, distributing, and reviewing data, potentially promoting productivity and quality improvements, and other economic benefits. The IIoT is an evolution of a distributed control system (DCS) that uses cloud computing to refine and optimize process controls, allowing for a greater degree of automation. 

In the manufacturing industries, the term industrial internet of things refers to the IoT industrial subset. Improved efficiency, analytics, and the workplace's transformation are future advantages of the industrial Internet of things. 

While connectivity and data acquisition is essential for IIoT, they are not the ultimate objectives but rather the basis and path to something larger. Predictive maintenance is an "easier" application of all technology related to current asset and management systems. Smart maintenance systems will minimize unnecessary downtime and improve efficiency, estimated to save up to 12 percent over planned repairs, reduce total maintenance costs by up to 30 percent, and eliminate breakdowns by up to 70 percent.

Wireless connections are increasingly used in IIoT deployments to boost industrial data services' operational communication, such as capturing vast process data, interacting with industrial robots, and monitoring machines/parts/products on and beyond the factory floor. 

Industrial users typically play a much more decisive and active role in deciding wireless services in their plants than personal customers in the wireless market. A collaboration between operational technology (OT) engineers, information technology (IT) device architects, and wireless network planners is inherently a wireless system architecture for IIoT applications.  The newly founded 5G Alliance for Connected Industries and Automation (5G-ACIA) has provided some inputs from industrial manufacturers in the form of white papers.  

There are no one-size-fits-all wireless solutions for industrial use cases as the service requirements, and operating environments may differ vastly from one another. Earlier industrial wireless networks provided connectivity in each single vertical manufacturing sector. As a result, the solutions that function well under the specific service requirements and operating conditions may only yield limited value in different use cases. Wireless success in more emerging IIoT applications will require wireless networks to facilitate the broader and deeper digital contact with industrial systems and provide flexible interfaces and quick deployments while keeping data integrity. 

For more information, contact Analynk Wireless.
(614) 755-5091

New Analynk 4G LTE Hazardous Area Antenna Nears Release


Analynk will soon release a new 4G LTE hazardous area antenna to compliment its existing line of rugged, industrial hazardous area antennas.  For details, call (614) 755-5091 or email info@analynk.com.

Why 4G?

Sure, everyone's talking about 5G and it's impact on industrial networks. By broadening the scope of applications possible with cellular technologies, there's no doubt 5G will connect industry like never before. However, it won't be soon.

The unfortunate truth is that features specific for industrial 5G use are not expected to be part of the 5G standard until 2021.  If you then consider the years it will take to introduce production runs of 5G chips, smooth out production processes, and stabilize their performance in varying applications, you're at least 4-5 years away from meaningful industrial 5G implementation.

In the meantime, non-public networks, owned and managed by large organizations or service providers, will be the most logical and efficient way to solve the challenges of availability, data privacy, reliability, and quick rollouts. This, coupled with backward compatibility from 4G LTE to 5G being a core strategy of the 3GPP consortium, presents a strong argument toward the adoption of 4G LTE networks as the most logical and effcient path forward.

Considering that 4G LTE's momentum continues, and forecasts predict it will continue to grow its user base for years to come, it stands to reason that "4G now" is the perfect bridge for adoption as you move toward Industry 4.0 and 5G.


New Article from NIST and IEEE on Wireless Network Design and IIoT

IIoT

A recently published article published by the IEEE and written by researchers at NIST titled "Wireless Network Design for Emerging IIoT Applications: Reference Framework and Use Cases" is available for reading and downloading at this US National Library of Medicine / National Institutes of Health / PMC site: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760003/.

ABSTRACT

Industrial Internet of Things (IIoT) applications, featured with data-centric innovations, are leveraging the observability, control, and analytics, as well as the safety of industrial operations. In IIoT deployments, wireless links are increasingly used in improving the operational connectivity for industrial data services, such as collecting massive process data, communicating with industrial robots, and tracking machines/parts/products on the factory floor and beyond. The wireless system design for IIoT applications is inherently a joint effort between operational technology (OT) engineers, information technology (IT) system architects, and wireless network planners. In this paper, we propose a new reference framework for the wireless system design in IIoT use cases. The framework presents a generic design process and identifies the key questions and tools of individual procedures. Specifically, we extract impact factors from distinct domains including industrial operations and environments, data service dynamics, and the IT infrastructure. We then map these factors into function clusters and discuss their respective impact on performance metrics and resource utilization strategies. Finally, discussions take place in four exemplary IIoT applications where we use the framework to identify the wireless network issues and deployment features in the continuous process monitoring, discrete system control, mobile applications, and spectrum harmonization, respectively. The goals of this work are twofold: 1) to assist OT engineers to better recognize wireless communication demands and challenges in their plants, 2) to help industrial IT specialists to come up with operative and efficient end-to-end wireless solutions to meet demanding needs in factory environments.


For information on wireless instrumentation, explosion proof antennas, and explosion proof enclosures, contact Analynk Wireless. Call them at (614) 755-5091 or visit https://analynk.com.

IIoT (Industrial Internet of Things) Wireless Networking Considerations in Hazardous Environments

Industrial Internet of Things Wireless Networking
BUILT TO BLAST
Industrial Internet of Things Infrastructure for
Hazardous Environments
Industry groups and standards bodies have collaborated to address these issues by classifying explosive materials and defining standards under which networking equipment and Internet of Things (IoT) devices can be safely operated in their presence. The work has been conducted by different organizations, in different regions, and it can be challenging to understand which standards are applicable under different scenarios.

This white paper examines the different categories of explosive risks, which standards to apply under different scenarios, how network infrastructure can be deployed in explosive environments, and how sensor systems can be integrated with this infrastructure. The goal is to enable end customers and resellers to select the network infrastructure, enclosures, and associated systems that are best suited to each scenario.