One Transmitter, One Receiver, Multiple Process Signals

Multiple input output module connects to single receiver or transmitter
A16000 Multiple I/O Module
Analynk
Radio frequency (RF) communications can enable the establishment or cost effective, quick, process signal connections across very small or very large distances. A misconception arises, from time to time, that it is necessary to have a dedicated transmitter and receiver for each process signal. Analynk has a solution that provides for delivery of up to sixteen process signals over a single transmission path.

Wireless transmission of process control signals is steadily increasing in prevalence throughout commercial, institutional and industrial settings. The ease of implementation, with no long cable runs to plan, layout, install, protect, and maintain, allows wireless installations to fulfill application niches that may have been considered impractical in the past.

Analynk provides hardware that easily allows the transmission and reception of up to 16 I/O points using a single transmitter and receiver. The A16000 Expansion Module can be configured with up to four internal cards that accommodate various types of input and output signals. The process is similar to setting up the I/O on a PLC. Connect the process signals to the A16000, and the A16000 to one of Analynk's transmitter or receiver devices. Setup is straight forward and allows the installation to be operable in minimal time.

Share your wireless communications and signal transmission challenges with the experts at Analynk and get recommendations on how to best implement workable solutions.


Automation and Grain Processing

grain storage silos
Grain processing benefits from automation and industrial wireless
The grain industry serves as an example of industrial process control, where standards are maintained at a constant rate for product delivery. Automation in grain processing provides both safety and efficiency by supporting the product delivery process. Historically, the grain production process has been hazardous, with industry workers subject to harsh conditions and potential risks associated with the grain, such as flammable grain dust. The transition from manual labor to automation has become the industry’s essential shift, with automation now a staple in harvesting, milling, and handling grain. The developers of automation components seek to mitigate production ineffectiveness and inventory miscalculations. Solids level transmitters, responsible for continuously monitoring the amount of grain in potentially hazardous environments, are a reliable replacement for employees at a silo’s peak.

Thanks to developments in technology, the implementation of sustainable automation does not need to come at the expense of company profit. A sole driver needs to control automation operations when dealing with grain handling, meaning that the number of employees put at risk via that stage in the process is substantially reduced. In order to keep track of inventory, automated management tracks not only the levels of grain inside silos but also where materials are located throughout the production facility. Grain sensors allow for the constant communication of how much grain is being moved through grain elevators and terminals. Instrumentation measures level, weight, and flow of solid grain while maintaining process protection.

Grain terminals allow for grain to be unloaded into hoppers, and then conveyors transfer those hoppers to the elevators. Cleaning drying, and blending machinery all employ automation, reducing the risks presented to employees. Truck and rail load-outs need to be close to target levels, because overloading or under-loading transport results in product loss. Preventing the loss of time and physical resources is a key element of automation. Radar transmitters cut through dust in silos to deliver reliable information back to the process operators. Ultrasonic instrumentation matches with point level technology to indicate when grain levels are high or low.

The handling and blending of raw materials can be monitored by solid flowmeters, with high accuracy still applicable in more compact spaces. A similar solid flowmeter ensures the accuracy of the flow rate and weight of solids measured in bulk, and can also be used in tandem with flow and weigh feeders to keep each individual load of grain consistently accurate. The applications of automation throughout the grain production process have evolved into a reliable means of reducing employee risk while ensuring accuracy and increasing throughput.

Grain operations cover large areas. A reliable, flexible, and cost saving way to establish the needed process control connections throughout the facility is via industrial wireless. Connections between measurement instruments and control units can be created across very long distances without the need to install conduit and cabling. Connections can be created quickly and reliably, with flexibility to increase throughput as more stations or sensors are needed. Equipment is suitable for general or hazardous locations. Contact an industrial wireless communications expert for help in developing connections on your project.





Diaphragm Seals Protect Industrial Pressure Gauges and Transmitters

industrial pressure gauge with diaphragm seal installed
Industrial pressure gauge with diaphragm seal installed
Courtesy Wika
Pressure measurement is a common element of industrial operations and control systems. Fluid processing can often involve media that is potentially harmful to pressure sensing devices. The media may be corrosive to the sensor material, or other media properties may impact the performance or usable life of the instrument. In process control environments, diaphragm seals play a role in protecting items like pressure sensors from damage by process fluids. The diaphragm seal is a flexible membrane that seals across the connecting path to a sensor and isolates the sensor from the process media. System pressure crosses the barrier without inhibition, enabling accurate measurement, but the process fluid does not. Typical materials composing diaphragm seals are elastomers, with a wide variety of specific materials available to accommodate almost every application.

In the operating principle of the diaphragm seal, the sealed chamber created between the diaphragm and the instrument is filled with an appropriate fluid, allowing for the transfer of pressure from the process media to the protected sensor. The seals are attached to the process by threaded, open flange, sanitary, or other connections. Diaphragm seals are sometimes referred to as chemical seals or gauge guards. Stainless steel, Hastelloy, Monel, Inconel, and titanium are used in high pressure environments, and some materials are known to work better when paired with certain chemicals.

Sanitary processes, such as food, beverage, and pharmaceuticals, use diaphragm seals to prevent the accumulation of process fluid in pressure ports, a possible source of contamination. If such a buildup were to occur, such as milk invading and lodging in a port on a pressure gauge, the resulting contamination compromises the quality and purity of successive batches. Extremely pure process fluids, like ultra-pure water, could be contaminated by the metal surface of a process sensor. Some pneumatic systems rely on the elimination of even the smallest pressure fluctuations, and diaphragm seals prevent those by ensuring the separation of the process materials from the sensors.

Diaphragm seals are not without some application concerns, and devices are now built to address and counter many potential issues related to the use of diaphragm seals with process monitoring instruments and equipment. Products seek to eliminate any and all dead space, allow for continuous process flow, and are self-cleaning thanks to continuous flow design. Some high pressure seals come equipped with anti-clogging features, accomplished by the elimination of internal cavities while protecting gauges. Multi-purpose seals reduce temperature influence and improve instrument performance while pinpointing and diffusing areas of high stress. These pre-emptive measures result in longer instrument life-cycles and improved performance while ensuring protection from corrosion.

There are numerous options and available diaphragm seal variants. Share your application specifics with a product specialist, combining your own process knowledge and experience with their product application expertise to develop an effective solution. Analynk Wireless manufactures industrial wireless communications equipment and process transmitters.

Tachometer Transmitter for Industrial Process Measurement and Control

industrial motor pump assembly
Tachometer transmitters deliver rotational speed signals
Analynk Wireless, in addition to producing their line of products for establishing wireless connections among industrial process measurement and control devices, manufactures an extensive array of wired products. The wired products are useful in establishing similar connections between sensors and the devices or instruments that will utilize their output signals. The transmitters are available with a wide array of input and output combinations, as well as several enclosure options. Enclosures can be customized to meet specific installation challenges.

The tachometer transmitter will convert the pulse signal from a tachometer into a linear signal representing rotational speed. There are many applications where a frequency output from a tachometer or other sensor needs conversion to a 4-20 mA or other common signal for use by a monitoring instrument. Analynk provides transmitters to easily convert almost any sensor signal to a linear voltage or current output. A data sheet is included below that provides more detail about one of the many transmitters available from Analynk.

Share your connectivity challenges with the process signal transmission experts at Analynk. Effective solutions come through consultation and cooperation.


Antennas In Industrial Wireless

explosion proof antenna for industrial wireless communications in hazardous areas
Explosion proof antenna for industrial wireless
communications in hazardous locations
Analynk Wireless
Wireless field instrumentation has played a growing role in the process control industry since its introduction. Digital instrumentation has become the industry standard thanks to advantages in communicability, durability, cost effectiveness, and integration. WirelessHART maintains, and even exceeds, the operating efficiency of wired systems without sacrificing security. Other protocols for industrial communications also operate in the process control space, each providing an operable solution for wireless connectivity. All utilize a common signal path that is worth understanding, if you are involved in process measurement and control…radio

Communicating information over long distances through open space is achieved by radio systems using electromagnetic fields. The common radio wave comprises oscillating electric and magnetic fields to generate electromagnetic radiation. The three most common antenna designs are the half-wave dipole antenna, the quarter-wave whip antenna, and the five element yagi antenna. The dipole and whip antennas are engineered to adeptly receive electromagnetic waves from all directions perpendicularly aligned with their axes. The yagi antenna, on the other hand, boasts director and reflector elements to increase its directionality. Thanks to this directionality, the yagi is best applicable in radar and point-to-point communications. The dipole and whip, also known as omnidirectional antennas, are better in situations where equal sensitivity is required in multiple directions instead of a pinpoint system.

Supervisory control and data acquisition (SCADA) systems find uses for both yagi and dipole antennas. The dimensions of particular antennas are directly related to signal wavelength because radio antennas work at maximum efficiency when in conditions of electrical resonance. The actual size of the antenna allows for a certain electrical resonance frequency. Low frequency antennas are larger, and higher frequency antennas are smaller. A quarter-wave whip antenna designed as part of a 900 MHz transceiver application, in industry, would be around 8.3 centimeters. The same antenna design for an AM radio broadcast transmission operating at 550 KHz would be around 136 meters. These antenna parameters are specific to both the conditions the antenna operates under and the related frequency being measured.

Industrially designed yagi antennas are built to preserve the reliability of wireless monitoring, even in harsh environments. Oil and gas companies, water districts and progressive utilities can monitor Remote Terminal Units (RTUs) from a centralized location. The major challenge facing radio wireless monitoring today is the maximization of uptime in difficult environments. The challenge is being addressed by the development of antennas which can pair with National Electrical Manufacturers Association RTU enclosures. Protecting against dust and rain, wind, splashing water, and hose-directed water are some of the ways product developers are responding to industry reported client concerns. Additionally, industrial environments can present hazards that require the use of specially enclosed antennas to eliminate the potential for ignition of flammable atmosphere. Similarly, dipole antenna manufacturers are adapting to challenging environments by designing antennas specific to the application needs of industry customers.

Analynk Wireless provides solutions for establishing wireless connections in industrial settings. You can learn more about the company at their website.

Install Aruba AP-324 Wireless Access Point in Hazardous Area


wireless access point enclosure for hazardous location
Analynk AP619 wireless access point enclosure
Analynk Wireless expands its already extensive line of wireless access point enclosures for hazardous industrial locations. The recent addition is the model AP619, specially equipped to house the Aruba AP-324 dual band access point.

Analynk access point enclosures accommodate specific wireless access points from a range of manufacturers, facilitating easy installation. Every model includes UL listed explosion proof antennas, a mounting bracket custom tailored for the access point equipment, and RF cables to make the antenna connections. Enclosures have penetrations located to match up with the specified access point. Models are included to house a range of units from Symbol, Cisco, Meru, Aruba, HP, and Motorola, with more models added regularly to accommodate additional wireless access points.

 Analynk Wireless specializes in industrial wireless communications. Your wireless communication challenges are welcome at Analynk, so make contact and share your requirements. Combining your process expertise with Analynk's product specialization will produce an effective solution.

The datasheet for the new model is provided below. You can see all the models and their companion access points on the Analynk site.


Video From Analynk Wireless



Analynk Wireless manufactures equipment used to establish wireless connections among process measurement and control devices. Receivers, transmitters,repeaters, antennas, and other devices can be used to easily establish connections between standard industrial process control instrumentation. Single and multiple point installations can be accommodated. Analynk also provides wireless access point enclosures and antennas for hazardous locations.

Analynk gear enables customers to create wireless connections across the room, across the street, and across the globe. Share your wireless connection ideas and challenges with the experts at Analynk. The combination of your process knowledge and their wireless communication expertise will lead to an effective solution.