The Analynk AP431 Dual-Band Hazardous Area Enclosure for the Cisco C9115AXE Access Point

Analynk AP431

The AP431 hazardous area enclosure houses the Cisco C9115AXE dual band access point for use in the hazardous areas.  The enclosure and antennas are designed for use in Class I, Division 1 group C & D areas.  All hardware, mounting plate, antennas and RF cables are provided to make installation quick and easy. The enclosure utilizes our proprietary explosion proof CTX series of antennas and includes four 2.4GHz/5GHz dual band antennas.  The access point is not in-clued with the enclosure. 

Applications:
  • Pharmaceuticals
  • Oil refineries
  • Oil & Gas Platforms
  • Chemical Plants
Ordering information: 
  • AP431 
  • AP431-ATEX 
  • AP431-N4 (NEMA 4X rating)
For more information call Analynk at 614-755-5091 or visit this web page.

CTX/CTM Series Hazardous Area 4G LTE Explosion Proof Antennas

Hazardous Area 4G LTE Explosion Proof Antennas

The Analynk CTX/CTM 4G LTE antennas are designed for use in “Hazardous-Classified” and Industrial-Hardened applications. The antennas are omnidirectional, with an average gain of 1.27dBi with a peak gain of 2.46 dBi. Two antenna versions are available, the CTX series has a 3/4” NPT mount, and the CTM series has an M20 mount. The antennas can be mounted on an Explosion Proof enclosure or conduit. The mounting base is made of heavy nickel-plated brass with an integrated TNC-F connector for ease of installation. The radome is optimized for rugged industrial applications while maintaining maximum radio frequency transmission and reception efficiency. The antennas have a built in Explosion Proof seal and may be mounted up to 18” away from the enclosure without an additional seal.

Get more information and download a specification sheet here.

Analynk Wireless
(614) 755-5091

Analynk AP420 Explosion Proof Access Point Enclosure For Meraki/Cisco MR42E

AP420 Explosion Proof Access Point Enclosure For Meraki/Cisco MR42E

The AP420 is a hazardous area enclosure designed to house the Meraki/Cisco MR42E dual band access point.The enclosure and antennas are rated for Class I, Div 1, groups C & D Hazardous Locations. All hardware, mounting plate, and RF cables are provided to make installation of the access point quick and easy. The enclosure includes five hazardous area 2.4GHz/5GHz antennas, the MR42E is not included.

Ratings: Class I, Div 1 Groups, C & D, ATEX Zone 1 optional

Applications:

  • Pharmaceuticals
  • Oil refineries
  • Oil & Gas Platforms
  • Chemical Plants

Ordering information:

  • AP420
  • AP420-N4 (NEMA 4 rating)
  • AP420-ATEX

For more information call Analynk at 614-755-5091 or visit this web page.

Industrial Wireless Networking Considerations

Industrial Wireless Networking Considerations

Implementation of complex monitoring and control processes by industrial automation systems in the chemical industries, power plants, oil refineries, and water delivery systems are typical. The industrial networks for process automation at these sites typically encompass broad areas, with highly dense networks with hundreds or thousands of nodes. 

The harsh industrial environment presents several obstacles for wireless communications, the most significant of which are dependability, fault-tolerance, and low latency. Unpredictable changes in temperature, humidity, vibrations, and pressure and the presence of highly reflective (metal) items and electromagnetic noise make industrial surroundings stressful.

In these installations, thousands of devices provide measured values (such as temperature, pressure, flow, and location) to actuators that control processes and servers that coordinate the manufacturing steps. Wiring is often tricky and expensive, particularly in combustible and explosive areas (for example, in the presence of flammable gases in an oil refinery.) Remote or inaccessible places are difficult to reach, and mobile nodes can only be connected intermittently.  Even though the amount of data is relatively low in an industrial application, dependability and latency are crucial, and complete data delivery in real-time is a must. 

Key constraints that hinder the actual deployment of wireless networks in such settings are battery capacity and device power consumption. Communication and power wires, ideally, can be eliminated to provide a completely wireless system. To that end, the devices should be energy efficient and capable of running for years on a single charge from a battery. Furthermore, wireless networks bring logical benefits to maintenance and commissioning, such as "plug-and-play" automation systems to reduce downtime and speed up tests, as well as "hot-swapping" malfunctioning modules.

Wireless Communication Terminology and Definitions

Wireless Communication Terminology and Definitions

Antenna – A device that converts electrical energy into propagating electromagnetic waves or the reverse.

Antenna Polarity – The orientation of the directionality of electromagnetic waves produced by an antenna. Common polarities are vertical, horizontal, and circular. Receive antennas should be oriented such that its polarity matches that of the transmitting antenna polarity.

Bandwidth – The amount of spectrum occupied by a signal. For example, a standard IEEE 802.11g transmission will use a nominal 22 MHz of bandwidth. An IEEE 802.15.4 transmission on which ZigBee, WirelessHART, and ISA100 Wireless are designed will use a nominal 5 MHz of bandwidth.

Carrier – A single frequency sinusoidal signal represented by a vertical line or spike in frequency.

Channel – A term used to identify a physical communications link and includes the characteristics of the entire path of information flow from transmitter to receiver. A channel is defined by electrical and electromagnetic characteristics of the transmission medium such as bandwidth and distortions.

Interference – RF power, typically in the RF band of interest, that disrupts communications by inhibiting the ability of a receiver to decode a transmission. Sources of interference could include anything that radiates electromagnetic (EM) energy such as machinery and undesirable radio devices.

Signal-to-Noise Ratio (SNR) – Ratio of signal power to naturally occurring emissions such as thermal noise and cosmic background radiation. Maximizing SNR is the primary goal of wireless communications.

Signal-to-Noise-And-Interference Ratio (SNIR) – Ratio of signal power to the sum of naturally occurring noise power and interference power. Minimizing the contribution of interference to SNIR is an important goal of a wireless communications system.

Power Decibels – A logarithmic representation of a voltage or power relative to a reference. Power is converted to decibels by the equation 10 P  10log p . The notation dBW and dBm represent power levels relative to 1 Watt and 1 milliwatt, respectively. The notation dB denotes a ratio of two numbers and should not be used to denote power.

Link Budget – Calculations that predict the probability that a transmission will be successfully detected and decoded by the receiver. A link budget will account for transmission power, signal formatting, noise, signal distortions, interference, receiver characteristics, and the link reliability requirements.

Link Margin – The difference in decibels (dB) between the ability of a receiver to successfully receive a transmission and the expected minimum received power. A link margin of 10 dB indicates that a signal could be attenuated by an additional factor of 10 before it can no longer be received. A link margin should accommodate reasonable unexpected attenuations, distortions, and interference not directly addressed by the link budget.

Transmitter – The device responsibility for transmitting information wirelessly.

Transmit Power – the average amount of RF energy per unit power emitted by the transmit antenna. This is typically specified in Watts, dBW, or dBm.

Bit Rate – The average or peak amount of data transmitted during an interval of time. This is represented as bits per second (bps).

Duty Cycle – The percentage at which a transmitter is active.

Modulation – The method by which information is used to modify the behavior of an RF carrier. Different modulations exist such as amplitude modulation (AM), frequency modulation (FM), and phase modulation (PM). Digital modulations are discrete versions of the above modulations. Common modulations used in industrial communications include binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), and quadrature amplitude modulation (QAM), among others. Wi-Fi uses a combination of BPSK, QPSK, and QAM depending on channel quality.

Error Control Coding (ECC) – A method to increase reliability of a communications link by adding data redundancy that can detect and correct errors produced by the channel. ECC increases the amount of bandwidth requirements or decreasing the amount of useful information over a channel.

Frequency Hopping (FH) – A process by which the carrier frequency is changed during or between transmissions accordingly to a pre-defined synchronized method. With FH, transmitter and receiver must tune to the same frequency at precisely the same time. FH hopping adds a layer of complexity to a system but also makes interception or disruption of the wireless system more difficult, thereby making the system more reliable.

Spread Spectrum – A process of spreading RF energy beyond what is needed to transmit information for the purpose of improved medium access, better interference immunity, or minimization of signal detection.

Payload – The information being transmitted. The size of the payload factors into transmission duration. All communication systems have a limit to the size of a payload before fragmentation is required. Not all communication systems support fragmentation. At the lowest layers of a communication system, the payload includes all data encoding and framing.

Receiver – The device responsible for decoding incoming transmissions in accordance with an established protocol.

Received Signal Strength Indicator (RSSI) – A measurement of received signal power.

Received Signal Quality Indicator (RSQI) – A measurement of the quality of the received signal

Sensitivity – The minimum signal strength, SNR, or SNIR required by a receiver to decode an incoming transmission.

Adjacent Channel Interference (ACI) – RF energy that is adjacent to the channel containing a desired signal.

Adjacent Channel Rejection (ACR) – The ability of the receiver to suppress ACI.

Dynamic Range – The difference between the maximum and minimum received signal power. A large dynamic range is particularly helpful in accommodating strong ACI that leaks past RF filtering.

Selectivity – The ability of a device to decode a transmission on one frequency without interference from transmissions on other frequencies.

Reprinted from Guide to Industrial Wireless Systems Deployments by the National Institute of Standards and Technology.

Analynk Wireless
(614) 755-5091