Wireless Process Instrumentation and Cloud-based Solutions, Part Two

Cloud-based engineering tools combined with wireless technologies continue to change the industrial control landscape by making employees more productive, making data available in real-time, and driving efficiencies in manufacturing plants. These new technologies reduce engineering hours, shorten maintenance time and make commissioning steps more efficient.  They also improve user safety, streamline usability, and significantly decrease budgets for maintenance.

A standout example of success in wireless and cloud-based tech is the adoption and growth of ADC. ADC is an abbreviation for Automated Device Commissioning, sometimes referred to as Smart Commissioning. From a practical standpoint, it is a set of engineering techniques and processes to check, inspect and test every operational component of a project. Workflows incorporating lean engineering can benefit from designing instrument configurations before the hardware is actually delivered to the facility.

ADC/Smart Commissioning can be used to: Reduce commissioning time to a fraction of the original hours needed; mechanically bind control configuration; reduce the need to verify I/O assignments; help avoid costly errors in wiring and termination; and automate intelligent device testing and documentation.

Use of ADC/Smart Commissioning promotes efficiency for automation projects. Engineers used to have to deal with repetitive and complicated tasks to get the project set up.  Now with this new approach, assisted by wireless and the cloud, teams of engineers can work on the project collectively, and at the same time, without needing to be physically at the same site.

ADC/Smart Commissioning assists engineers in confirming that the right transmitter is landed on the correct controller input/output module (I/O).  If a mismatch is determined, the engineer can fix the mismatch in real time, on-site or remotely.  Then, once the hardware configuration is confirmed, the user can wirelessly perform loop checkout as well.

As capable engineers and maintenance personnel continue to retire from the workforce, and as manufacturing companies are forced to accomplish their work with fewer experienced employees, wireless technology and cloud-based tools facilitate greater efficiency through equipment optimization, performance tracking, safety monitoring, and process reliability.

Analynk Wireless
https://analynk.com
(614) 755-5091

Wireless Process Instrumentation and Cloud-based Solutions

Wireless technologies and cloud computing systems are changing industrial communications. Industrial wireless networks and cloud-based tools, simply stated, allow manufacturing plants to do more with fewer people.

This two-part article delves into the recent trends in the use of cloud-based tools and wireless networks to help plant operators improve their application validation, improve their diagnostic selection of instrumentation, and improve device commissioning.

The benefits of wireless and mobile communications is clear. Engineers and other factory personnel can input data wirelessly via a smart phone, or a laptop computer so they can have their specific requirements recorded. Collaboration with other team members is possible, through the cloud, to determine the optimum set up for the project devices to streamline engineering decisions (and to avoid expensive mistakes upfront in the project). Information in the cloud may also be equipped for instant duplication, so projects that have many identical device configurations can be rapidly repeated.

Using a cloud-based and wireless network approach improves success in installing large numbers of new field instruments, which is common for unit expansion. Other benefits of adapting cloud-based services and wireless networks for prices control include:
  • A convenient way to share and collaborate in real-time. Multiple users can visualize the transmitter configuration though a link. This saves staff time and reduces travel time for support people. 
  • If a beginning user has an underdeveloped knowledge of the application, the cloud can provide readily accessible information such as compatibility charts, specification sheets, code requirements, etc … . 
  • Generation of a standard data sheet so engineers don't have to spend as much time on data entry. The data sheet can be stored to support the user's necessary documentation and audit trail. 

The paradigm for instrumentation setup is changing dramatically. Cloud-based tools and wireless communications are optimizing manufacturing operations and delivering capital projects cost effectively, efficiently, and as rapidly as possible.

Under increasing pressure for improved quality, safety, and profits companies are migrating toward cloud-based application, data storage and wireless networking. These new technologies are playing a key role in improving safety, lowering operating costs, providing real-time performance data, and continuously monitor processes.

Introduction to WirelessHART

WirelessHART is a subset of the HART industrial instrument communication standard as of version 7, communicating process data over 2.4 GHz radio waves. Individual instruments communicate with a common “gateway” device serving as an interface between the wireless network and a wired network or a host control system. In addition to this, though, individual WirelessHART devices also form links with one another, so that the network data routes look like a “mesh” with all nearby nodes interconnected in addition to connecting with the gateway:

WirelessHART

In a mesh network, devices (nodes) perform double-duty as repeaters to relay data from other instruments to the gateway as needed. In other words, data transmitted from one WirelessHART instrument may not be directly received by the gateway device if that path is blocked or too far away. Instead, the data may “hop” from one device to another nearby, which then re-broadcasts that information to the gateway via a clearer path.

The purpose of a mesh network is to provide redundant data pathways in case of device failure or changes in the environment interrupting radio communication between devices. In this way, data packets may be re-routed to the gateway if the shortest route fails, in a manner similar to how Terminal Control Protocol (TCP) and Internet Protocol (IP) work together to route data segments from source to destination over the “mesh” of the Internet. This feature is often referred to in WirelessHART technical literature as the self-healing property of the mesh network.

According to the HART Foundation, reliability for a well-designed WirelessHART mesh network is 99.7300204% minimum, and typically greater than 99.9999998%.

With each WirelessHART field instrument capable of functioning as a radio repeater, the potential exists to form wireless networks larger in size than the maximum broadcast/reception range of any one device. This illustration shows what is possible:

WirelessHART
An important consideration when planning a WirelessHART network is battery life. With the main purpose of wireless field instruments being the elimination of wired connections to the host system, the field instruments cannot rely on a host system for their electrical power needs. Lithium-based batteries currently fulfill this role as primary power source, with life expectancies of several years. Interestingly, the amount of energy required by a WirelessHART device to transmit radio-frequency data is small compared to the energy required to power its essential instrument functions (e.g. pressure measurement, temperature measurement). This means a WirelessHART device operating as a radio repeater (in addition to being a measurement device) adds little burden to its battery.

Perhaps the greatest challenge in sustaining any wireless field instrument network is ensuring network integrity despite unending changes in the physical environment around the instruments. Remember that this is an industrial, field-instrument wireless network designed to be installed in less-than-ideal physical environments. These wireless devices must somehow reliably communicate with each other despite interference from high-power electrical devices (e.g. variable-frequency motor drive units), while mounted on or near metal objects such as girders, pipes, pipe racks, large vessels, motors, enclosures, shelters, and electrical conduits. Even the ground of an industrial environment can be an impediment to robust radio communication: steel-reinforced concrete and electrical grounding grids form what is essentially a solid “ground plane” that will interfere with WirelessHART devices mounted too close to ground level. Added to all this spatial complexity is the continual presence of large vehicles and other moving machines (cranes, forklifts, manlifts, etc.). It is not uncommon for scaffolding to be temporarily erected for maintenance work in industrial areas, presenting yet one more obstacle for RF signals.

In answer to these challenges is an integral and essential component of a WirelessHART network called the Network Manager: an advanced digital algorithm usually executed by the network gateway’s microprocessor. The purpose of the Network Manager is to manage the details of the network automatically, “tuning” various parameters for optimum reliability and data throughput. Among other tasks, the Network Manager assigns “timeslots” for individual devices to transmit, determines the frequency-hopping schedule, detects and authenticates new devices added to the network, dynamically adjusts device transmission power, and selects alternative routes between devices.

In a sense, the Network Manager in a WirelessHART network continually audits and tunes the RF system in an attempt to maximize reliability. The Network Manager’s functionality does not substitute for good planning during the design phase of the WirelessHART network, but it does eliminate the need for a human technician or engineer to continuously monitor the network’s performance and make the small adjustments necessary to compensate for changing conditions. When changes occur in a WirelessHART network that cannot be compensated by the Network Manager, the real-time statistics provided by the Network Manager are invaluable to the technician or engineer assigned to update the network.


Reprinted from "Lessons In Industrial Instrumentation" by Tony R. Kuphaldt – under the terms and conditions of the Creative Commons Attribution 4.0 International Public License.

What Are Industrial Control Systems?

Control systems are computer-based systems that are used by many infrastructures and industries to monitor and control sensitive processes and physical functions. Typically, control systems collect sensor measurements and operational data from the field, process and display this information, and relay control commands to local or remote equipment. In the electric power industry they can manage and control the transmission and delivery of electric power, for example, by opening and closing circuit breakers and setting thresholds for preventive shutdowns. Employing integrated control systems, the oil and gas industry can control the refining operations on a plant site as well as remotely monitor the pressure and flow of gas pipelines and control the flow and pathways of gas transmission. In water utilities, they can remotely monitor well levels and control the wells’ pumps; monitor flows, tank levels, or pressure in storage tanks; monitor water quality characteristics, such as pH, turbidity, and chlorine residual; and control the addition of chemicals. Control system functions vary from simple to complex; they can be used to simply monitor processes—for example, the environmental conditions in a small office building—or manage most activities in a municipal water system or even a nuclear power plant.

In certain industries such as chemical and power generation, safety systems are typically implemented to mitigate a disastrous event if control and other systems fail. In addition, to guard against both physical attack and system failure, organizations may establish back-up control centers that include uninterruptible power supplies and backup generators.

There are two primary types of control systems. Distributed Control Systems (DCS) typically are used within a single processing or generating plant or over a small geographic area. Supervisory Control and Data Acquisition (SCADA) systems typically are used for large, geographically dispersed distribution operations. A utility company may use a DCS to generate power and a SCADA system to distribute it.

A control system typically consists of a “master” or central supervisory control and monitoring station consisting of one or more human-machine interfaces where an operator can view status information about the remote sites and issue commands directly to the system. Typically, this station is located at a main site along with application servers and an engineering workstation that is used to configure and troubleshoot the other control system components. The supervisory control and monitoring station is typically connected to local controller stations through a hard-wired network or to remote controller stations through a communications network—which could be the Internet, a public switched telephone network, or a cable or wireless (e.g. radio, microwave, or Wi-Fi) network. Each controller station has a Remote Terminal Unit (RTU), a Programmable Logic Controller (PLC), DCS controller, or other controller that communicates with the supervisory control and monitoring station. The controller stations also include sensors and control equipment that connect directly with the working components of the infrastructure—for example, pipelines, water towers, and power lines. The sensor takes readings from the infrastructure equipment—such as water or pressure levels, electrical voltage or current—and sends a message to the controller. The controller may be programmed to determine a course of action and send a message to the control equipment instructing it what to do—for example, to turn off a valve or dispense a chemical. If the controller is not programmed to determine a course of action, the controller communicates with the supervisory control and monitoring station before sending a command back to the control equipment. The control system also can be programmed to issue alarms back to the operator when certain conditions are detected. Handheld devices, such as personal digital assistants, can be used to locally monitor controller stations. Experts report that technologies in controller stations are becoming more intelligent and automated and communicate with the supervisory central monitoring and control station less frequently, requiring less human intervention.

Checklists for Industrial Wireless Systems Deployments

Checklists for Industrial Wireless Systems
The document "Guide to Industrial Wireless Checklists", developed by the National Institute for Standards and Technology, is intended to be a practical guide used by engineers and managers facilitating them to go through the process of defining the objectives of their wireless systems and examining the environments where the wireless systems are to be deployed, then helping them in selecting, designing, deploying, and monitoring the wireless systems using existing technology in a factory.

Checklists from the above referenced document have been culled and available here for download.



Network Backbone Basics: Hubs, Bridges, Switches, and Gateways

Network Backbone Basics
As the process industry steadily moves to wireless networking components, its important to understand the basics. This post and the video below describe four key backbone components for data networking.

Signal flow and data transfer are assisted within a network by various devices known as backbones. The four different backbone devices are hubs, bridges, switches, and gateways. Each device transports data in a specific way.

A hub is a centralized connecting device. Often located at a center of a star network that automatically rebroadcasts any signal or data that it receives from one device to all other devices on the network. Because all the devices connected to a hub are competing for media usage, it's possible for collisions to occur when two devices send transmissions simultaneously. For this reason, it's important to avoid using a hub for messaging that requires immediate response.

Another network backbone device is called a bridge. Network bridges are smart devices that process and record information about signal traffic between devices in the networks. The bridge then uses this information to determine the most efficient path for data transfer, between a transmitting and a receiving device, without having to send it to every device in the network.

A switch is a multi-port network bridge that uses packet switching to forward data to one or multiple specific devices. Because more than one transmission can occur at a time, switch operating speeds are very fast. Switches are also full duplex devices that allow data signals to flow simultaneously in both directions. This eliminates the risk of data collisions that may occur in other network backbone devices.

When two segments of the same network have different communication formats a gateway is needed to connect them. A gateway performs a conversion function so that a computer on an Ethernet network using a TCP/IP protocol may communicate with a PLC on a subnet using the ControlNet protocol. Even though these two protocols are incompatible, the gateway can connect them on the same network and allow them to function together. Hubs, bridges, switches, and gateways - the backbones of networking - perform individual and important functions in keeping networks performing at their highest level.

https://analynk.com
(614) 755-5091