Analynk Wireless manufactures hazardous area wireless access point enclosures and hazardous area wireless antennas. Analynk is also a certified UL508A panel manufacturer providing high quality control panels to Ohio and surrounding areas. For more information, visit the Analynk website here or call 614-755-5091.
Video From Analynk Wireless
Analynk Wireless manufactures equipment used to establish wireless connections among process measurement and control devices. Receivers, transmitters,repeaters, antennas, and other devices can be used to easily establish connections between standard industrial process control instrumentation. Single and multiple point installations can be accommodated. Analynk also provides wireless access point enclosures and antennas for hazardous locations.
Analynk gear enables customers to create wireless connections across the room, across the street, and across the globe. Share your wireless connection ideas and challenges with the experts at Analynk. The combination of your process knowledge and their wireless communication expertise will lead to an effective solution.
Wireless Transmitters In Process Measurement and Control
Opportunities for cost effective wireless process control connections are everywhere |
Wireless devices and wired devices can cohabitate the same network. The installation costs of wireless networks is vastly lower than wired networks due to the fact wireless networks need much less hardware. Wireless networks are also more efficient than their wired peers in regards to auxiliary measurements, involving measurement of substances at several points. Adding robustness to wireless, self-organizing networks is easy, because when new wireless components are introduced to a network, they can link to the existing network without needing to be reconfigured manually. Gateways can accommodate between 50 and 100 devices, allowing a very elastic range for expansion.
In a coal fired plant, plant operators walk a tightrope in monitoring multiple elements of the process. They calibrate limestone feed rates in conjunction with desulfurization systems, using target values determined experientially. The difficult process environment results from elevated slurry temperatures, and the associated pH sensors can only last for so long under such conditions. Thanks to the expandability of wireless transmitters, the incremental cost is reduced thanks to the flexibility of installation of new measurement loops. In regards to maintenance, the status of wireless devices are consistently transmitted alongside the process variables. Fewer manual checks are needed, and preventative measures are infrequent compared to wired networks. The minimization of overtime and staff instruction correlates with a maintenance of precise process control.
Time Synchronized Mesh Protocol (TSMP) ensures perfect timing for individual transmissions, which lets every transmitter’s radio and processor ‘rest’ between either sending or receiving a transmission. To compensate for the lack of a physical wire, in terms of security, wireless networks are equipped with a combination of authentication, encryption, verification, and key management. The amalgamation of those fail-safes makes for the security of wireless networks equal to that of a wired system. The multilayered approach, anchored by gateway key-management, presents a defense sequence. Thanks to the advancements in modern field networking technology, interference due to noise from other networks has been minimized to the point of being a rare concern. Even with the rarity, fail-safes are included in Wireless HART™.
All security functions are handled by the network autonomously, meaning manual configuration is unnecessary. In addition to process control environments, power plants will typically use two simultaneous wireless networks. Transmitters allow both safety showers and eyewash stations to trigger an alarm at the point of control when activated. Thanks to reduced cost, and their ease of applicability in environments challenging to wired systems, along with their developed performance and security, wireless instrumentation is altering process control environment monitoring for the better.
Analynk Wireless specializes in making wireless connections among process measurement and control equipment in the industrial arena.
Standalone Process Temperature Controllers
The regulation of temperature is a common operation throughout many facets of modern life. Environmental control in commercial, industrial, and institutional buildings, even residential spaces, uses the regulation of temperature as the primary measure of successful operation. There are also countless applications for the control of temperature found throughout manufacturing, processing, and research. Everywhere that temperature needs to be regulated, a device or method is needed that will control the delivery of a heating or cooling means.
For industrial process applications, the temperature control function is found in two basic forms. It can reside as an operational feature within a programmable logic controller or other centralized process control device or system. Another form is a standalone process temperature controller, with self-contained input, output, processing, and user interface. Depending upon the needs of the application, one may have an advantage over the other. The evolution of both forms, integrated and standalone, has resulted in each offering consistently greater levels of functionality.
There are two basic means of temperature control, regardless of the actual device used. Open loop control delivers a predetermined amount of output action without regard to the process condition. Its simplicity makes open loop control economical. Best applications for this type of control action are processes that are well understood and that can tolerate a potentially wide variation in temperature. A change in the process condition will not be detected, or responded to, by open loop control. The second temperature control method, and the one most employed for industrial process control, is closed loop.
Closed loop control relies on an input that represents the process condition, an algorithm or internal mechanical means to produce an output action related to the process condition, and some type of output device that delivers the output action. Closed loop controllers require less process knowledge on the part of the operator than open loop to regulate temperature. The controllers rely on the internal processing and comparison of input (process temperature) to a setpoint value. The difference between the two is the deviation or error. Generally, a greater error will produce a greater change in the output of the controller, delivering more heating or cooling to the process and driving the process temperature toward the setpoint.
A standalone temperature controller can fulfill multiple functions. In addition to controlling the target process temperature, controllers can be configured with data logging, alarm outputs, programmed changes to setpoints, auxiliary outputs for on/off functions, and a detailed HMI to provide data entry or a display of the process condition. Locating the controller near the process can be useful when technicians or operators need to monitor the process or effect a change in the controller setpoint. Local controllers can be connected via wired or wireless communications to other monitoring and control devices. Wireless communications are easily accomplished using Analynk's transmitters and receivers to cover distances from inches to miles.
The current product offering for standalone closed loop temperature controllers ranges from very simple on/off regulators to highly developed products with multiple inputs and outputs, as well as many auxiliary functions and communications. The range of product features almost assures a unit is available for every application. Evaluating the staggering range of products available and producing a good match between process requirements and product capabilities can be facilitated by reaching out to a process control products specialist. Combine your own process knowledge and experience with their product application expertise to develop effective solution options.
For industrial process applications, the temperature control function is found in two basic forms. It can reside as an operational feature within a programmable logic controller or other centralized process control device or system. Another form is a standalone process temperature controller, with self-contained input, output, processing, and user interface. Depending upon the needs of the application, one may have an advantage over the other. The evolution of both forms, integrated and standalone, has resulted in each offering consistently greater levels of functionality.
There are two basic means of temperature control, regardless of the actual device used. Open loop control delivers a predetermined amount of output action without regard to the process condition. Its simplicity makes open loop control economical. Best applications for this type of control action are processes that are well understood and that can tolerate a potentially wide variation in temperature. A change in the process condition will not be detected, or responded to, by open loop control. The second temperature control method, and the one most employed for industrial process control, is closed loop.
Closed loop control relies on an input that represents the process condition, an algorithm or internal mechanical means to produce an output action related to the process condition, and some type of output device that delivers the output action. Closed loop controllers require less process knowledge on the part of the operator than open loop to regulate temperature. The controllers rely on the internal processing and comparison of input (process temperature) to a setpoint value. The difference between the two is the deviation or error. Generally, a greater error will produce a greater change in the output of the controller, delivering more heating or cooling to the process and driving the process temperature toward the setpoint.
A standalone temperature controller can fulfill multiple functions. In addition to controlling the target process temperature, controllers can be configured with data logging, alarm outputs, programmed changes to setpoints, auxiliary outputs for on/off functions, and a detailed HMI to provide data entry or a display of the process condition. Locating the controller near the process can be useful when technicians or operators need to monitor the process or effect a change in the controller setpoint. Local controllers can be connected via wired or wireless communications to other monitoring and control devices. Wireless communications are easily accomplished using Analynk's transmitters and receivers to cover distances from inches to miles.
The current product offering for standalone closed loop temperature controllers ranges from very simple on/off regulators to highly developed products with multiple inputs and outputs, as well as many auxiliary functions and communications. The range of product features almost assures a unit is available for every application. Evaluating the staggering range of products available and producing a good match between process requirements and product capabilities can be facilitated by reaching out to a process control products specialist. Combine your own process knowledge and experience with their product application expertise to develop effective solution options.
Analynk's Newest Wireless Access Point Enclosure for Hazardous Areas
New Model AP-621 Hazardous Area Wireless Access Point Enclosure |
The most recent addition is the model AP621 which accomodates the Aruba AP-214 dual band access point. Analynk Wireless specializes in industrial wireless communications. Your wireless communication challenges are welcome at Analynk, so make contact and share your requirements. Combining your process expertise with Analynk's product specialization will produce an effective solution.
The datasheet for the new model is provided below. You can see all the models and their companion access points on the Analynk site.
Severe Service Valves
Careful matching of process valves to intended use results in better and longer service |
Industrial valves that are intended for application at the extremes are generally referred to as severe service valves. While there are plenty of published and accepted standards for industrial valves, one does not exist to precisely define a severe service valve. There is, however, some movement toward the development of severe service standards in some industry segments.
So, how do you know when to focus valve selection activities on severe service valves, as opposed to general purpose valves? There are a number of basic criteria that might point you in that direction:
- Very extreme media or environmental temperature
- High pressure drop operation that may cause cavitation
- Rapid and extreme changes to inlet pressure
- Certain types or amounts of solids contained in the fluid
- High number of mechanical operations
- Thermal cycling
There are numerous manufacturers of severe service valves, each seeming to concentrate on a particular niche. You can always get more information, or discuss your special requirements, with a valve specialist. They have access to technical resources that can help with selecting the right valve configuration to meet your severe service applications.
Analynk Wireless designs and manufactures equipment that establishes wireless connections among process measurement and control devices.
Wireless Temperature Monitoring System Assures Safety in Firefighter Training Facility
Firefighters training at a burn building Courtesy Fire Facilities |
Analynk Wireless designed and manufactures part of the safety and monitoring system for the Fire Facilities training structures. The system is suitable for worldwide use, as are the training structures. Sixteen temperature monitoring locations are established in the structure and monitored using the pyrometer developed by Analynk. The monitoring station provides alarm notification if the temperature in any of the monitored zones exceeds the level at which trainees can safely enter the area.
- Monitor up to 16 channels of thermocouple input
- Local temperature display on touchscreen HMI
- Audible and flashing local alarm, plus relay contacts for connection of external devices
- WiFi connection to smart phone or tablet for remote viewing of all operating information
- Data logging of each channel to USB drive
- Cloud connection for view access from anywhere with an internet connection
- Email and text alerts
- Monitoring station has NEMA 4 rating and is suitable for installation and operation in environments to -40 degrees
The Fire Facilities Pyrometer is another example of Analynk's capabilities in designing and building engineered products for specific applications. Share your process control product development challenges with the experienced professionals at Analynk, combining your concept with their design and engineering expertise to develop top flight product solutions.
Case Study From CSB - Industrial Plant Heat Exchanger Failure
Shell and tube heat exchangers at industrial plant |
The U.S. Chemical Safety Board, or CSB, is an independent federal agency that investigates industrial chemical accidents. Below, find one of their video reenactments and analysis of an explosion that occurred at a Louisiana chemical processing plant in 2013. A portion of the reenactment shows how a few seemingly innocuous oversights can combine with other unrecognized conditions that result in a major conflagration.
Check out the video and sharpen your sense of awareness for potential trouble spots in your own operation.
Subscribe to:
Posts (Atom)